A combined DFT-predictive and experimental exploration of the sensitivity towards nucleofuge variation in zwitterionic intermediates relating to mechanistic models for unimolecular chemical generation and trapping of free C2 and alternative bimolecular pathways involving no free C2.
DOI: 10.14469/hpc/8168 Metadata
Created: 2021-05-04 06:52
Last modified: 2022-10-19 17:51
License: Creative Commons: Public Domain Dedication 1.0
Funding: (none given)
Co-author: Kazunori Miyamoto Co-author: Masanobu Uchiyama Co-author: Miki Arita
Description
Following the recent report of the chemical generation and trapping at room temperatures of C2, generated from an alkynyl phenyl iodonium salt, a computational analysis had indicated that both unimolecular fragmentation and bimolecular substitution mechanisms for the process could be envisaged. Here a combined theoretical and experimental analysis explores how the energetics of these mechanisms and resulting experimental products respond to variation in the nucleofuge. When the phenyl iodonium nucleofuge is replaced by pyridinium, trapping products are again obtained, which we conclude favours a bimolecular mechanism involving no free C2. Trapped products in greater yield were also observed using dibenzothiophenium as the nucleofuge in both condensed solution phase and most significantly in a two-flask room temperature experiment in which a volatile species, presumed to be C2, is transferred and trapped in a second flask. The energetics of the unimolecular fragmentation process producing C2 are predicted to be too high to correspond to a facile thermal reaction, which means that an experimental/theoretical dichotomy remains to be explained.
Files
Filename | Size | Type | Description |
---|---|---|---|
SI data.pdf | 920KB | application/pdf | Supporting information (traditional form) |
SI_data.pdf | 1MB | application/pdf | Supporting information, V2. |
Members
DOI | Description |
---|---|
10.14469/hpc/10193 | Computational data for "A combined DFT-predictive and experimental exploration of the sensitivity towards nucleofuge variation in zwitterionic intermediates relating to mechanistic models for unimolecular chemical generation and trapping of free C2 and alternative bimolecular pathways involving no free C2". |
10.14469/hpc/8280 | FAIR Table 1. Free energies for dimerisation and other reactions of X(+)-C≡C(−) |
10.14469/hpc/10192 | NMR data for "A combined DFT-predictive and experimental exploration of the sensitivity towards nucleofuge variation in zwitterionic intermediates relating to mechanistic models for unimolecular chemical generation and trapping of free C2 and alternative bimolecular pathways involving no free C2". |
10.14469/hpc/10222 | Mass spectroscopic data for "A combined DFT-predictive and experimental exploration of the sensitivity towards nucleofuge variation in zwitterionic intermediates relating to mechanistic models for unimolecular chemical generation and trapping of free C2 and alternative bimolecular pathways involving no free C2." |
Associated DOIs
Current dataset ... | DOI | Description |
---|---|---|
References | 10.1038/s41467-021-21433-8 | Article: A Thermodynamic assessment of the reported room-temperature chemical synthesis of C2, Nature Comm., 2021. |
References | 10.1039/D1CP02056K | Article: Routes involving no free C2 in the DFT-computed mechanistic model for the reported room-temperature chemical synthesis of C2, Phys. Chem. Chem. Phys., 2021, 23, 12630 - 12636. |
References | 10.1039/D2CP01214F | Published article: A combined DFT-predictive and experimental exploration of the sensitivity towards nucleofuge variation in zwitterionic intermediates relating to mechanistic models for unimolecular chemical generation and trapping of free C2 and alternative bimolecular pathways involving no free C2. |
References | 10.14469/hpc/7721 | FAIR Data Table S2. Computed energies for model systems as a system calibration |