Routes involving no free C2 in a DFT-computed mechanistic model for the reported room-temperature chemical synthesis of C2.
DOI: 10.14469/hpc/7616 Metadata
Created: 2020-12-06 16:14
Last modified: 2021-05-29 20:21
License: Creative Commons: Public Domain Dedication 1.0
Funding: (none given)
Description
Recent lively debates about the nature of the quadruple bonding in the diatomic species C2 have been heightened by recent suggestions of molecules in which carbon may be similarly bonded to other elements. The desirability of having methods for generating such species at ambient temperatures and in solution in order to study their properties may have been realized by a recent report of the first chemical synthesis of free C2 itself under mild conditions. The method involved unimolecular fragmentation of an alkynyl zwitterion 2 as generated from the precursor 1, resulting in production and then trapping of free C2 at ambient temperatures rather than the high temperature gas phase methods normally employed for C2 generation. Here, alternative mechanisms are proposed for this reaction based on DFT calculations involving bimolecular 1,1- or 1,2-iodobenzene displacement reactions from 2 directly by galvinoxyl radical, or hydride transfer from 9,10-dihydroanthracene to 2. These mechanisms result in the same trapped products as observed experimentally, but unlike that involving unimolecular generation of free C2, exhibit calculated free energy barriers commensurate with the reaction times observed at room temperatures. The relative energies of the transition states for 1,1 vs 1,2 substitution provide a rationalisation for the observed isotopic substitution patterns. The same mechanism also provides an energetically facile path to polymeric synthesis of carbon rich species by extending the carbon chain attached to the iodonium group, eventually resulting in formation of amorphous carbon and discrete molecules such as C60.
Members
DOI | Description |
---|---|
10.14469/hpc/7687 | CC-IPh + Galvinoxyl 1,2-TS, Def2-SVPD G = -1883.404654 |
10.14469/hpc/7688 | CC-IPh + Galvinoxyl 1,1-TS, Def2-SVPD, G = -1883.401400 |
10.14469/hpc/7691 | F(-) + CCIPh, wB97XD/Def2-TZVPPD, SCRF=dichloromethane Reactant G = -705.385855 |
10.14469/hpc/7698 | CC M062X/Def2-TZVPPD/CPCM=DCM |
10.14469/hpc/7699 | Bimolecular TS C2h M062X/Def2-TZVPPD/SCRF=DCM |
10.14469/hpc/7693 | PhICC + CCIPh 1,2 -TS IRC |
10.14469/hpc/7701 | CH3-I M062X/Def2-TZVPPD/CPCM=DCM |
10.14469/hpc/7700 | CH3-I-CC M062X/Def2-TZVPPD/SCRF=DCM |
10.14469/hpc/7702 | CC B2PLYPD3/Def2-TZVPPD/CPCM=DCM |
10.14469/hpc/7695 | PhI + 9,10-dihydroanthracene, Cs G = -1069.139646 |
10.14469/hpc/7703 | Bimolecular TS C2h B2PLYPD3/Def2-TZVPPD/SCRF=DCM |
10.14469/hpc/7706 | Bimolecular TS C2h b3lyp/Def2-TZVPPD/SCRF=DCM |
10.14469/hpc/7697 | PhICC + 9,10-dihydroanthracene, 1,2 Saddle=1, RHF G = 1145.008883 |
10.14469/hpc/7707 | CC B3LYP+GD3BJ/Def2-TZVPPD/CPCM=DCM |
10.14469/hpc/7972 | Reaction between Dichloromethane and CC. |
10.14469/hpc/7709 | CH3-I-CC B3LYP+GD3+BJ/Def2-TZVPPD/SCRF=DCM |
10.14469/hpc/7710 | CH3-I-CC wB97XD/Def2-TZVPPD/SCRF=DCM |
10.14469/hpc/7727 | CC-IPh + Galvinoxyl 1,1-TS, Def2-SVPD, G = -1883.401400 => gas phase G = -1883.377039 |
10.14469/hpc/7728 | PhICCCC + CCCCIPh, 1,4-TS, C1 G = -1362.126689, DG = 27.3 |
10.14469/hpc/7712 | Bimolecular TS C2h wB97XD/Def2-TZVPPD/SCRF=DCM E = -751.361189392 DE = 28.5 G = -751.320309 DG = 35.2 |
10.14469/hpc/7729 | PhICC + CCCCCCIPh 1,2 -TS Def2-SVPD/CPCM=DCM, G = -1362.136592 |
10.14469/hpc/7711 | CH3-I wB97XD/Def2-TZVPPD/CPCM=DCM E = -337.704325229 == -751.2745250139; G = -337.692199 == -751.264282 |
10.14469/hpc/7730 | PhICCIPh + CC as new mechanism for forming C2 G = -1209.920739 DG = +86.6 compared to 2*PhICC |
10.14469/hpc/7713 | CC,wB97XD/Def2-SVPD/SCRF=DCM, E = -75.7780175117 G = -75.791993 |
10.14469/hpc/7731 | PhICC + CCCCCCIPh reactant, E = -1362.33225, G = -1362.175663 |
10.14469/hpc/7714 | MeI wB97XD/Def2-SVPD DCM E = -337.646958184, 2* = -675.293916368 ==-751.0719338797; G = 2*-337.635095 = -675.27019 == -751.062183 |
10.14469/hpc/7733 | PhICC + CCCCCCIPh, 1,1-TS, one Ph group rotated, Cs symmetry G = -1362.153211 DDG = 14.1 |
10.14469/hpc/7716 | CH3-I PBEQIDH/Def2-TZVPPD/SCRF=DCM |
10.14469/hpc/7734 | PhICC + CCCCCCIPh, 1,1-TS G = -1362.154439 DG = 13.3 |
10.14469/hpc/7717 | CH3-I-CC PBEQIDH/Def2-TZVPPD/SCRF=DCM |
10.14469/hpc/7718 | Bimolecular TS C2h PBEQIDH/Def2-TZVPPD/SCRF=DCM |
10.14469/hpc/7715 | CC PBEQIDH/Def2-TZVPPD/CPCM=DCM |
10.14469/hpc/7736 | pentafluoroPhICC + phenoxy, reactant, Def2-SVPD, SCRF=DCM, G = -1407.185828 |
10.14469/hpc/7705 | CH3-I B2PLYPD3/Def2-TZVPPD/CPCM=DCM |
10.14469/hpc/7708 | CH3-I B3LYP+GD3+BJ/Def2-TZVPPD/CPCM=DCM |
10.14469/hpc/7704 | CH3-I-CC B2PLYPD3/Def2-TZVPPD/SCRF=DCM |
10.14469/hpc/7738 | pentafluoroPhICC + phenoxy,1,1-TS, Def2-SVPD, SCRF=DCM, G = -1407.151796, DG = 21.4 |
10.14469/hpc/7739 | Pentafluorophenyl-I-CC, Def2-SVPD, SCRF=DCM, G = -1100.732513 |
10.14469/hpc/7741 | PhICCCC + CCCCIPh, reactant, C2h, G = -1362.170263 |
10.14469/hpc/7755 | Galvinoxyl alone, Def2-SVPD, SCRF=DCM, G = -1278.418870 |
10.14469/hpc/7762 | phenoxy radical, wB97XD/Def2-SVPD G = -306.455338 |
10.14469/hpc/7763 | PhICC + CCCCIPh, branched mode to produce C5 chain, anti, G = -1286.077648 |
10.14469/hpc/7766 | PhICC + CCCCIPh, branched mode to produce C5 chain, syn G = -1286.086804 |
10.14469/hpc/7769 | PhICC + CCCCCCCCIPh, 1,1-TS Def2-SVPD/CPCM=DCM, G = -1438.214217 |
10.14469/hpc/7770 | PhICC + CCCCCCCCIPh reactant, Def2-SVPD/CPCM=DCM, G = -1438.233118 |
10.14469/hpc/7771 | PhICC+CCIPh-1,2 G = -1210.034333, => syn G = -1210.030662 |
10.14469/hpc/7776 | PhICC+CCCCIPh-1,2 G = -1286.079175 => syn, G = -1286.082736 |
10.14469/hpc/7773 | PhICC + CCCCCCIPh 1,2 -TS Def2-SVPD/CPCM=DCM, G = -1362.136592 => branched syn G = -1362.148139 |
10.14469/hpc/7779 | Galvinoxyl + IPh + CC, Def2-SVPD, rotamer, - G = -1807.553360 |
10.14469/hpc/7788 | PhBrCC + CCBrPh 1,2, Def2-SVPD/SCRF=DCM, -TS, G = -5762.262426, DG = 13.3 |
10.14469/hpc/7790 | PhAtCC + CCAtPh 1,2 -TS C2h, G = -1139.591210 |
10.14469/hpc/7792 | PhBrCC + CCBrPh 1,2, Def2-SVPD/SCRF=DCM, Reactant, G = -5762.283563 |
10.14469/hpc/7793 | PhAtCC + CCAtPh 1,2 -Reactant C2h,, G = -1139.618899 |
10.14469/hpc/7794 | PhBrCC + CCBrPh 1,2, Def2-SVPD/SCRF=DCM, -TS, G = -5762.262426 IRC |
10.14469/hpc/7797 | PhICC + H-CHCl2 1,2-TS, G = -1564.354006 ΔG = 33.3 kcal/mol, IRC |
10.14469/hpc/7798 | PhICC + H-CHCl2 1,1-TS, G = -1564.345413, ΔG = 38.7 kcal/mol |
10.14469/hpc/7799 | PhICC + H-CHCl2 Reactant, G = -1564.407075 |
10.14469/hpc/7800 | PhICC + H-CHCl2 1,1-TS, G = -1564.345413, ΔG = 38.7, IRC |
10.14469/hpc/7801 | PhICC + H-CHCl2 1,2-TS, G = -1564.354006, ΔG = 33.3 |
10.14469/hpc/7777 | PhICC + CCCCIPh, branched mode to produce C5 chain, syn G = -1286.086804 IRC |
10.14469/hpc/7778 | PhICC + CCCCCCIPh 1,2 -TS Def2-SVPD/CPCM=DCM, G = -1362.136592 => branched mode to produce C7 chain, syn G = -1362.148139 IRC |
10.14469/hpc/7592 | MeI, CCSD(T)/Def2-SVPD/SCRF=DCM, G = -336.547139 |
10.14469/hpc/7596 | Bimolecular TS C2 only wB97XD/Def2-TZVPPD/SCRF=DCM |
10.14469/hpc/7899 | CC + HCHCl2. |
10.14469/hpc/7598 | CC-IPh + PhO radical, Cs 1,2-TS Def2-TZVPPD G = -912.107781, ΔG = 21.0 kcal/mol |
10.14469/hpc/7599 | phenoxy radical, wB97XD/Def2-TZVPPD G = -306.778361 |
10.14469/hpc/7600 | C-IMe + PhO radical, Nosym, 1,2-TS Def2-TZVPPD G = -720.428314 |
10.14469/hpc/7605 | CC-IPh + PhO radical, Reactant Def2-TZVPPD G =-912.141323 |
10.14469/hpc/7906 | Dichloromethane CCSD(T)/Def2-TZVPPD, C2v G = -958.688162 |
10.14469/hpc/7606 | CC-IPh + 2,6-di-t-butylphenoxy, reactant, Cs, Def2-SVPD G = -1225.494635 |
10.14469/hpc/7607 | CC-IPh + PhO radical, Cs 1,2-TS Def2-TZVPPD IPh rotated G = -912.107014 ΔG = 21.5 |
10.14469/hpc/7609 | CC-IPh + PhO radical, Cs 1,1-TS Def2-TZVPPD G = -912.107762 ΔG =21.0 |
10.14469/hpc/7610 | CC-IPh + 2,6-di-t-butylphenoxy, 1,2-TS, Def2-SVPD Cs symmetry G = -1225.458113 ΔG = 22.9 |
10.14469/hpc/7611 | PhI-CC + CC-IPh, 1,1-TS, Def2-SVPD Cs symmetry, ΔG = 19.9 kcal/mol. |
10.14469/hpc/7613 | CC-IPh + PhO radical, Cs 1,2-TS Def2-TZVPPD IPh rotated . G = -912.107162 ΔG = 19.6 |
10.14469/hpc/7614 | PhI-CC + CC-IPh, C2h reactant, Def2-SVPD G = -1210.058822 |
10.14469/hpc/7615 | CC-IPh + 2,6-di-t-butylphenoxy, 1,1-TS, Def2-SVPD Cs symmetry, IPh orthog, G = -1225.454636 ΔG = 25.1 ΔΔG = 2.2 |
10.14469/hpc/7617 | CC-IPh + 2,6-di-t-butylphenoxy, 1,1-TS, Def2-SVPD Cs symmetry G = -1225.452754, IPh coplanar |
10.14469/hpc/7618 | CC wB97XD/Def2-TZVPPD/CPCM=DCM G = -75.879884 |
10.14469/hpc/7619 | PhI Def2-TZVPPD, SCRF=DCM C2v G = -529.375170 |
10.14469/hpc/7620 | PhI-CC + CCCC-IPh, 1,1-TS, Def2-SVPD Cs symmetry G = -1286.088148 ΔG = 16.9 |
10.14469/hpc/7621 | PhI-CC + CCCC-IPh, Cs reactant, Def2-SVPD G = -1286.115137 |
10.14469/hpc/7622 | CC-IPh + PhO radical, 1,2-TS Def2-SVPD Cs symmetry G = -911.447928 DG = 20.0 |
10.14469/hpc/7623 | CC-IPh + PhO radical, 1,1-TS Def2-SVPD G = -911.448953 DG = 19.4 |
10.14469/hpc/7624 | PhI-CC Def2-TZVPPD, SCRF=DCM Cs G = -605.369213 |
10.14469/hpc/7625 | PhI-CC + CC-IPh, 1,1-TS, Def2-SVPD Cs symmetry G = -1210.027145 ΔG = 19.9 IRC |
10.14469/hpc/7627 | CH3-I-CC wB97XD/Def2-TZVPPD/SCRF=DCM |
10.14469/hpc/7628 | CC-IPh + PhO radical, Reactant Def2-SVPD, Cs G -911.479895 |
10.14469/hpc/7631 | CC-IPh + PhO radical, 1,2-TS Def2-SVPD Cs symmetry G = -911.447928 IRC |
10.14469/hpc/7632 | PhI-CC + CCCC-IPh, 1,1-TS, Def2-SVPD Cs symmetry G = -1286.088148 DG = 16.9 IRC |
10.14469/hpc/7633 | CC-IPh + PhO radical, 1,1-TS Def2-SVPD Cs symmetry IRC |
10.14469/hpc/7641 | PhICC + 9,10-dihydroanthracene, Def2-SVPD guess(mix) TS <S**2>= 0.4129 G = -1144.996296 |
10.14469/hpc/7644 | Bimolecular MeI+ CCIMe, TS C2h CCSD(T)/Def2-SVPD/SCRF=DCM G = -748.77082 |
10.14469/hpc/7645 | Bimolecular TS C2 only wB97XD/Def2-SVPD/SCRF=DCM -751.323261 |
10.14469/hpc/7648 | CC-IPh + Galvinoxyl reactant, Def2-SVPD, E =-1884.0960 G = -1883.445880 |
10.14469/hpc/7719 | Supplementary Tables S1 and S2 for Routes involving no free C2 in a DFT-computed mechanistic model for the reported room-temperature chemical synthesis of C2. |
10.14469/hpc/7651 | PhICC + 9,10-dihydroanthracene, Reactant G = -1145.046811 |
10.14469/hpc/7652 | PhICC + 9,10-dihydroanthracene, Def2-SVPD guess(mix) TS IRC reverse |
10.14469/hpc/7866 | PhI-CC + CC-IPh, Cs monomer reactant, Def2-SVPD G = -605.030213*2 = -1,210.060426 (-1.0) -1210.058822 |
10.14469/hpc/7657 | CC-IPh + 2,6-di-t-butylphenoxy, 1,2-TS, Def2-SVPD 2 G = -1225.458113 rotamer => G = -1225.458865 |
10.14469/hpc/7659 | F(-) + CCIPh, wB97XD/Def2-TZVPPD, SCRF=dichloromethane, TS G = -705.346438 |
10.14469/hpc/7660 | F(-) + CCIPh, wB97XD/Def2-SVPD, SCRF=dichloromethane Reactant G = -704.934245 |
10.14469/hpc/7662 | F(-) + CCIPh, 1,1-TS, wB97XD/Def2-SVPD, SCRF=dichloromethane, G = -704.878130 DG = 35.2 |
10.14469/hpc/7664 | PhICC + 9,10-dihydroanthracene, 1,2 Saddle=1, RHF G = 1145.008883 |
10.14469/hpc/7665 | CC-IPh + 2,6-di-t-butylphenoxy, reactant, rotated, G = -1225.496559 |
10.14469/hpc/7666 | CC-IPh + 2,6-di-t-butylphenoxy, 1,1-TS, Def2-SVPD G = -1225.457675 |
10.14469/hpc/7667 | PhICC + 9,10-dihydroanthracene, 1,2 Saddle=1, RHF IRC forward |
10.14469/hpc/7668 | F(-) + CCIPh, 1,2-TS, wB97XD/Def2-SVPD, SCRF=dichloromethane, G = -704.895595 DG = 24.3 |
10.14469/hpc/7669 | PhICC+CCCCIPh-1,2 G = -1286.077379 |
10.14469/hpc/7672 | PhICC+CCIPh-1,2 G = -1210.034333 |
10.14469/hpc/7676 | CC-IPh + Galvinoxyl 1,1-TS, Def2-SVPD, rotamer .G = -1883.401104 |
10.14469/hpc/7677 | PhICC+CCIPh-1,2, Def2-SVPD, DCM, IRC |
10.14469/hpc/7678 | PhICC+CCCCIPh-1,2 G = -1286.079175 |
10.14469/hpc/7679 | CC-IPh + Galvinoxyl reactant, Def2-SVPD, rotamer, G = -1883.442567 (higher energy conformer ) |
10.14469/hpc/7683 | NH3 + CCIPh, 1,2-TS, Def2-SVPD/SCRF=DCM, G = -661.481807 IRC |
10.14469/hpc/7685 | CC-IPh + PhO radical, 1,2-TS Def2-SVPD Cs symmetry G = -911.447928 gas phase |
10.14469/hpc/7686 | CC-IPh + PhO radical, 1,1-TS Def2-SVPD G = -911.448953 gas phase |
Associated DOIs
Current dataset ... | DOI | Description |
---|---|---|
References | 10.1039/D1CP02056K | Routes involving no free C2 in a DFT-computed mechanistic model for the reported room-temperature chemical synthesis of C2. |
References | 10.26434/chemrxiv.13560260 | ChemRxiv preprint |