Routes involving no free C2 in a DFT-computed mechanistic model for the reported room-temperature chemical synthesis of C2.

DOI: 10.14469/hpc/7616 Metadata

Created: 2020-12-06 16:14

Last modified: 2021-05-29 20:21

Author: Henry Rzepa

License: Creative Commons: Public Domain Dedication 1.0

Funding: (none given)

Description

Recent lively debates about the nature of the quadruple bonding in the diatomic species C2 have been heightened by recent suggestions of molecules in which carbon may be similarly bonded to other elements. The desirability of having methods for generating such species at ambient temperatures and in solution in order to study their properties may have been realized by a recent report of the first chemical synthesis of free C2 itself under mild conditions. The method involved unimolecular fragmentation of an alkynyl zwitterion 2 as generated from the precursor 1, resulting in production and then trapping of free C2 at ambient temperatures rather than the high temperature gas phase methods normally employed for C2 generation. Here, alternative mechanisms are proposed for this reaction based on DFT calculations involving bimolecular 1,1- or 1,2-iodobenzene displacement reactions from 2 directly by galvinoxyl radical, or hydride transfer from 9,10-dihydroanthracene to 2. These mechanisms result in the same trapped products as observed experimentally, but unlike that involving unimolecular generation of free C2, exhibit calculated free energy barriers commensurate with the reaction times observed at room temperatures. The relative energies of the transition states for 1,1 vs 1,2 substitution provide a rationalisation for the observed isotopic substitution patterns. The same mechanism also provides an energetically facile path to polymeric synthesis of carbon rich species by extending the carbon chain attached to the iodonium group, eventually resulting in formation of amorphous carbon and discrete molecules such as C60.

Members

DOIDescription
10.14469/hpc/7687 CC-IPh + Galvinoxyl 1,2-TS, Def2-SVPD G = -1883.404654
10.14469/hpc/7688 CC-IPh + Galvinoxyl 1,1-TS, Def2-SVPD, G = -1883.401400
10.14469/hpc/7691 F(-) + CCIPh, wB97XD/Def2-TZVPPD, SCRF=dichloromethane Reactant G = -705.385855
10.14469/hpc/7698 CC M062X/Def2-TZVPPD/CPCM=DCM
10.14469/hpc/7699 Bimolecular TS C2h M062X/Def2-TZVPPD/SCRF=DCM
10.14469/hpc/7693 PhICC + CCIPh 1,2 -TS IRC
10.14469/hpc/7701 CH3-I M062X/Def2-TZVPPD/CPCM=DCM
10.14469/hpc/7700 CH3-I-CC M062X/Def2-TZVPPD/SCRF=DCM
10.14469/hpc/7702 CC B2PLYPD3/Def2-TZVPPD/CPCM=DCM
10.14469/hpc/7695 PhI + 9,10-dihydroanthracene, Cs G = -1069.139646
10.14469/hpc/7703 Bimolecular TS C2h B2PLYPD3/Def2-TZVPPD/SCRF=DCM
10.14469/hpc/7706 Bimolecular TS C2h b3lyp/Def2-TZVPPD/SCRF=DCM
10.14469/hpc/7697 PhICC + 9,10-dihydroanthracene, 1,2 Saddle=1, RHF G = 1145.008883
10.14469/hpc/7707 CC B3LYP+GD3BJ/Def2-TZVPPD/CPCM=DCM
10.14469/hpc/7972 Reaction between Dichloromethane and CC.
10.14469/hpc/7709 CH3-I-CC B3LYP+GD3+BJ/Def2-TZVPPD/SCRF=DCM
10.14469/hpc/7710 CH3-I-CC wB97XD/Def2-TZVPPD/SCRF=DCM
10.14469/hpc/7727 CC-IPh + Galvinoxyl 1,1-TS, Def2-SVPD, G = -1883.401400 => gas phase G = -1883.377039
10.14469/hpc/7728 PhICCCC + CCCCIPh, 1,4-TS, C1 G = -1362.126689, DG = 27.3
10.14469/hpc/7712 Bimolecular TS C2h wB97XD/Def2-TZVPPD/SCRF=DCM E = -751.361189392 DE = 28.5 G = -751.320309 DG = 35.2
10.14469/hpc/7729 PhICC + CCCCCCIPh 1,2 -TS Def2-SVPD/CPCM=DCM, G = -1362.136592
10.14469/hpc/7711 CH3-I wB97XD/Def2-TZVPPD/CPCM=DCM E = -337.704325229 == -751.2745250139; G = -337.692199 == -751.264282
10.14469/hpc/7730 PhICCIPh + CC as new mechanism for forming C2 G = -1209.920739 DG = +86.6 compared to 2*PhICC
10.14469/hpc/7713 CC,wB97XD/Def2-SVPD/SCRF=DCM, E = -75.7780175117 G = -75.791993
10.14469/hpc/7731 PhICC + CCCCCCIPh reactant, E = -1362.33225, G = -1362.175663
10.14469/hpc/7714 MeI wB97XD/Def2-SVPD DCM E = -337.646958184, 2* = -675.293916368 ==-751.0719338797; G = 2*-337.635095 = -675.27019 == -751.062183
10.14469/hpc/7733 PhICC + CCCCCCIPh, 1,1-TS, one Ph group rotated, Cs symmetry G = -1362.153211 DDG = 14.1
10.14469/hpc/7716 CH3-I PBEQIDH/Def2-TZVPPD/SCRF=DCM
10.14469/hpc/7734 PhICC + CCCCCCIPh, 1,1-TS G = -1362.154439 DG = 13.3
10.14469/hpc/7717 CH3-I-CC PBEQIDH/Def2-TZVPPD/SCRF=DCM
10.14469/hpc/7718 Bimolecular TS C2h PBEQIDH/Def2-TZVPPD/SCRF=DCM
10.14469/hpc/7715 CC PBEQIDH/Def2-TZVPPD/CPCM=DCM
10.14469/hpc/7736 pentafluoroPhICC + phenoxy, reactant, Def2-SVPD, SCRF=DCM, G = -1407.185828
10.14469/hpc/7705 CH3-I B2PLYPD3/Def2-TZVPPD/CPCM=DCM
10.14469/hpc/7708 CH3-I B3LYP+GD3+BJ/Def2-TZVPPD/CPCM=DCM
10.14469/hpc/7704 CH3-I-CC B2PLYPD3/Def2-TZVPPD/SCRF=DCM
10.14469/hpc/7738 pentafluoroPhICC + phenoxy,1,1-TS, Def2-SVPD, SCRF=DCM, G = -1407.151796, DG = 21.4
10.14469/hpc/7739 Pentafluorophenyl-I-CC, Def2-SVPD, SCRF=DCM, G = -1100.732513
10.14469/hpc/7741 PhICCCC + CCCCIPh, reactant, C2h, G = -1362.170263
10.14469/hpc/7755 Galvinoxyl alone, Def2-SVPD, SCRF=DCM, G = -1278.418870
10.14469/hpc/7762 phenoxy radical, wB97XD/Def2-SVPD G = -306.455338
10.14469/hpc/7763 PhICC + CCCCIPh, branched mode to produce C5 chain, anti, G = -1286.077648
10.14469/hpc/7766 PhICC + CCCCIPh, branched mode to produce C5 chain, syn G = -1286.086804
10.14469/hpc/7769 PhICC + CCCCCCCCIPh, 1,1-TS Def2-SVPD/CPCM=DCM, G = -1438.214217
10.14469/hpc/7770 PhICC + CCCCCCCCIPh reactant, Def2-SVPD/CPCM=DCM, G = -1438.233118
10.14469/hpc/7771 PhICC+CCIPh-1,2 G = -1210.034333, => syn G = -1210.030662
10.14469/hpc/7776 PhICC+CCCCIPh-1,2 G = -1286.079175 => syn, G = -1286.082736
10.14469/hpc/7773 PhICC + CCCCCCIPh 1,2 -TS Def2-SVPD/CPCM=DCM, G = -1362.136592 => branched syn G = -1362.148139
10.14469/hpc/7779 Galvinoxyl + IPh + CC, Def2-SVPD, rotamer, - G = -1807.553360
10.14469/hpc/7788 PhBrCC + CCBrPh 1,2, Def2-SVPD/SCRF=DCM, -TS, G = -5762.262426, DG = 13.3
10.14469/hpc/7790 PhAtCC + CCAtPh 1,2 -TS C2h, G = -1139.591210
10.14469/hpc/7792 PhBrCC + CCBrPh 1,2, Def2-SVPD/SCRF=DCM, Reactant, G = -5762.283563
10.14469/hpc/7793 PhAtCC + CCAtPh 1,2 -Reactant C2h,, G = -1139.618899
10.14469/hpc/7794 PhBrCC + CCBrPh 1,2, Def2-SVPD/SCRF=DCM, -TS, G = -5762.262426 IRC
10.14469/hpc/7797 PhICC + H-CHCl2 1,2-TS, G = -1564.354006 ΔG = 33.3 kcal/mol, IRC
10.14469/hpc/7798 PhICC + H-CHCl2 1,1-TS, G = -1564.345413, ΔG = 38.7 kcal/mol
10.14469/hpc/7799 PhICC + H-CHCl2 Reactant, G = -1564.407075
10.14469/hpc/7800 PhICC + H-CHCl2 1,1-TS, G = -1564.345413, ΔG = 38.7, IRC
10.14469/hpc/7801 PhICC + H-CHCl2 1,2-TS, G = -1564.354006, ΔG = 33.3
10.14469/hpc/7777 PhICC + CCCCIPh, branched mode to produce C5 chain, syn G = -1286.086804 IRC
10.14469/hpc/7778 PhICC + CCCCCCIPh 1,2 -TS Def2-SVPD/CPCM=DCM, G = -1362.136592 => branched mode to produce C7 chain, syn G = -1362.148139 IRC
10.14469/hpc/7592 MeI, CCSD(T)/Def2-SVPD/SCRF=DCM, G = -336.547139
10.14469/hpc/7596 Bimolecular TS C2 only wB97XD/Def2-TZVPPD/SCRF=DCM
10.14469/hpc/7899 CC + HCHCl2.
10.14469/hpc/7598 CC-IPh + PhO radical, Cs 1,2-TS Def2-TZVPPD G = -912.107781, ΔG = 21.0 kcal/mol
10.14469/hpc/7599 phenoxy radical, wB97XD/Def2-TZVPPD G = -306.778361
10.14469/hpc/7600 C-IMe + PhO radical, Nosym, 1,2-TS Def2-TZVPPD G = -720.428314
10.14469/hpc/7605 CC-IPh + PhO radical, Reactant Def2-TZVPPD G =-912.141323
10.14469/hpc/7906 Dichloromethane CCSD(T)/Def2-TZVPPD, C2v G = -958.688162
10.14469/hpc/7606 CC-IPh + 2,6-di-t-butylphenoxy, reactant, Cs, Def2-SVPD G = -1225.494635
10.14469/hpc/7607 CC-IPh + PhO radical, Cs 1,2-TS Def2-TZVPPD IPh rotated G = -912.107014 ΔG = 21.5
10.14469/hpc/7609 CC-IPh + PhO radical, Cs 1,1-TS Def2-TZVPPD G = -912.107762 ΔG =21.0
10.14469/hpc/7610 CC-IPh + 2,6-di-t-butylphenoxy, 1,2-TS, Def2-SVPD Cs symmetry G = -1225.458113 ΔG = 22.9
10.14469/hpc/7611 PhI-CC + CC-IPh, 1,1-TS, Def2-SVPD Cs symmetry, ΔG = 19.9 kcal/mol.
10.14469/hpc/7613 CC-IPh + PhO radical, Cs 1,2-TS Def2-TZVPPD IPh rotated . G = -912.107162 ΔG = 19.6
10.14469/hpc/7614 PhI-CC + CC-IPh, C2h reactant, Def2-SVPD G = -1210.058822
10.14469/hpc/7615 CC-IPh + 2,6-di-t-butylphenoxy, 1,1-TS, Def2-SVPD Cs symmetry, IPh orthog, G = -1225.454636 ΔG = 25.1 ΔΔG = 2.2
10.14469/hpc/7617 CC-IPh + 2,6-di-t-butylphenoxy, 1,1-TS, Def2-SVPD Cs symmetry G = -1225.452754, IPh coplanar
10.14469/hpc/7618 CC wB97XD/Def2-TZVPPD/CPCM=DCM G = -75.879884
10.14469/hpc/7619 PhI Def2-TZVPPD, SCRF=DCM C2v G = -529.375170
10.14469/hpc/7620 PhI-CC + CCCC-IPh, 1,1-TS, Def2-SVPD Cs symmetry G = -1286.088148 ΔG = 16.9
10.14469/hpc/7621 PhI-CC + CCCC-IPh, Cs reactant, Def2-SVPD G = -1286.115137
10.14469/hpc/7622 CC-IPh + PhO radical, 1,2-TS Def2-SVPD Cs symmetry G = -911.447928 DG = 20.0
10.14469/hpc/7623 CC-IPh + PhO radical, 1,1-TS Def2-SVPD G = -911.448953 DG = 19.4
10.14469/hpc/7624 PhI-CC Def2-TZVPPD, SCRF=DCM Cs G = -605.369213
10.14469/hpc/7625 PhI-CC + CC-IPh, 1,1-TS, Def2-SVPD Cs symmetry G = -1210.027145 ΔG = 19.9 IRC
10.14469/hpc/7627 CH3-I-CC wB97XD/Def2-TZVPPD/SCRF=DCM
10.14469/hpc/7628 CC-IPh + PhO radical, Reactant Def2-SVPD, Cs G -911.479895
10.14469/hpc/7631 CC-IPh + PhO radical, 1,2-TS Def2-SVPD Cs symmetry G = -911.447928 IRC
10.14469/hpc/7632 PhI-CC + CCCC-IPh, 1,1-TS, Def2-SVPD Cs symmetry G = -1286.088148 DG = 16.9 IRC
10.14469/hpc/7633 CC-IPh + PhO radical, 1,1-TS Def2-SVPD Cs symmetry IRC
10.14469/hpc/7641 PhICC + 9,10-dihydroanthracene, Def2-SVPD guess(mix) TS <S**2>= 0.4129 G = -1144.996296
10.14469/hpc/7644 Bimolecular MeI+ CCIMe, TS C2h CCSD(T)/Def2-SVPD/SCRF=DCM G = -748.77082
10.14469/hpc/7645 Bimolecular TS C2 only wB97XD/Def2-SVPD/SCRF=DCM -751.323261
10.14469/hpc/7648 CC-IPh + Galvinoxyl reactant, Def2-SVPD, E =-1884.0960 G = -1883.445880
10.14469/hpc/7719 Supplementary Tables S1 and S2 for Routes involving no free C2 in a DFT-computed mechanistic model for the reported room-temperature chemical synthesis of C2.
10.14469/hpc/7651 PhICC + 9,10-dihydroanthracene, Reactant G = -1145.046811
10.14469/hpc/7652 PhICC + 9,10-dihydroanthracene, Def2-SVPD guess(mix) TS IRC reverse
10.14469/hpc/7866 PhI-CC + CC-IPh, Cs monomer reactant, Def2-SVPD G = -605.030213*2 = -1,210.060426 (-1.0) -1210.058822
10.14469/hpc/7657 CC-IPh + 2,6-di-t-butylphenoxy, 1,2-TS, Def2-SVPD 2 G = -1225.458113 rotamer => G = -1225.458865
10.14469/hpc/7659 F(-) + CCIPh, wB97XD/Def2-TZVPPD, SCRF=dichloromethane, TS G = -705.346438
10.14469/hpc/7660 F(-) + CCIPh, wB97XD/Def2-SVPD, SCRF=dichloromethane Reactant G = -704.934245
10.14469/hpc/7662 F(-) + CCIPh, 1,1-TS, wB97XD/Def2-SVPD, SCRF=dichloromethane, G = -704.878130 DG = 35.2
10.14469/hpc/7664 PhICC + 9,10-dihydroanthracene, 1,2 Saddle=1, RHF G = 1145.008883
10.14469/hpc/7665 CC-IPh + 2,6-di-t-butylphenoxy, reactant, rotated, G = -1225.496559
10.14469/hpc/7666 CC-IPh + 2,6-di-t-butylphenoxy, 1,1-TS, Def2-SVPD G = -1225.457675
10.14469/hpc/7667 PhICC + 9,10-dihydroanthracene, 1,2 Saddle=1, RHF IRC forward
10.14469/hpc/7668 F(-) + CCIPh, 1,2-TS, wB97XD/Def2-SVPD, SCRF=dichloromethane, G = -704.895595 DG = 24.3
10.14469/hpc/7669 PhICC+CCCCIPh-1,2 G = -1286.077379
10.14469/hpc/7672 PhICC+CCIPh-1,2 G = -1210.034333
10.14469/hpc/7676 CC-IPh + Galvinoxyl 1,1-TS, Def2-SVPD, rotamer .G = -1883.401104
10.14469/hpc/7677 PhICC+CCIPh-1,2, Def2-SVPD, DCM, IRC
10.14469/hpc/7678 PhICC+CCCCIPh-1,2 G = -1286.079175
10.14469/hpc/7679 CC-IPh + Galvinoxyl reactant, Def2-SVPD, rotamer, G = -1883.442567 (higher energy conformer )
10.14469/hpc/7683 NH3 + CCIPh, 1,2-TS, Def2-SVPD/SCRF=DCM, G = -661.481807 IRC
10.14469/hpc/7685 CC-IPh + PhO radical, 1,2-TS Def2-SVPD Cs symmetry G = -911.447928 gas phase
10.14469/hpc/7686 CC-IPh + PhO radical, 1,1-TS Def2-SVPD G = -911.448953 gas phase

Associated DOIs

Current dataset ...DOIDescription
References 10.1039/D1CP02056K Routes involving no free C2 in a DFT-computed mechanistic model for the reported room-temperature chemical synthesis of C2.
References 10.26434/chemrxiv.13560260 ChemRxiv preprint

Edit