Entering Gaussian System, Link 0=/Applications/g16/g16 Input=/Users/hrzepa/Downloads/NN.gjf Output=/Users/hrzepa/Downloads/NN.log Initial command: /Applications/g16/l1.exe "/Users/hrzepa/Downloads/Gau-52130.inp" -scrdir="/Users/hrzepa/Downloads/" Entering Link 1 = /Applications/g16/l1.exe PID= 52131. Copyright (c) 1988-2017, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 16 program. It is based on the Gaussian(R) 09 system (copyright 2009, Gaussian, Inc.), the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016. ****************************************** Gaussian 16: EM64M-G16RevB.01 20-Dec-2017 23-May-2020 ****************************************** %nprocshared=8 Will use up to 8 processors via shared memory. %mem=12GB %chk=NN.chk ---------------------------------------------------------------------- # opt freq ccsd=(t,conver=10,maxcycles=2048)/def2tzvpp scf=(conver=11, maxcycles=1024) ---------------------------------------------------------------------- Warning: this job cannot use analytic gradients and so will do many energy evaluations. 1/29=20000,38=1,172=1/1,14; 2/12=2,17=6,18=5,29=3,40=1/2; 3/5=44,7=202,11=9,25=1,30=1/1,2,3; 4//1; 5/5=2,6=11,7=1024,38=5/2; 8/6=4,9=120000,10=1/1,4; 9/5=7,6=2048,9=10,14=2/13; 6/7=2,8=2,9=2,10=2/1; 1//14(2); 2/29=3/2; 99//99; 2/29=3/2; 3/5=44,7=202,11=9,25=1,30=1/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,6=11,7=1024,38=5/2; 8/6=4,9=120000,10=1/1,4; 9/5=7,6=2048,9=10,14=2/13; 1//14(-6); 2/29=3/2; 6/7=2,8=2,9=2,10=2/1; 99/9=10/99; ------ HIJZUW ------ Symbolic Z-matrix: Charge = 0 Multiplicity = 1 N N 1 B1 Variables: B1 1.15073 NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- NUMERICAL EIGENVECTOR FOLLOWING MINIMUM SEARCH INITIALIZATION PASS ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! ---------------------- ---------------------- ! Name Value Derivative information (Atomic Units) ! ------------------------------------------------------------------------ ! B1 1.1507 estimate D2E/DX2 ! ------------------------------------------------------------------------ *************************************************** ** O P T I M I Z A T I O N P A R A M E T E R S ** ** MAXIMUM NO. OF ITERATIONS : 21 ** ** MAXIMUM ALLOWED STEP LENGTH : 0.300000 ** *************************************************** NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- --------------------------------------------------------------------------------------------------- Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J --------------------------------------------------------------------------------------------------- 1 1 N 2 2 N 1 1.150730( 1) --------------------------------------------------------------------------------------------------- Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 7 0 0.000000 0.000000 1.150730 --------------------------------------------------------------------- Stoichiometry N2 Framework group D*H[C*(N.N)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.575365 2 7 0 0.000000 0.000000 -0.575365 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 54.5101075 54.5101075 Standard basis: def2TZVPP (5D, 7F) There are 17 symmetry adapted cartesian basis functions of AG symmetry. There are 3 symmetry adapted cartesian basis functions of B1G symmetry. There are 8 symmetry adapted cartesian basis functions of B2G symmetry. There are 8 symmetry adapted cartesian basis functions of B3G symmetry. There are 3 symmetry adapted cartesian basis functions of AU symmetry. There are 17 symmetry adapted cartesian basis functions of B1U symmetry. There are 8 symmetry adapted cartesian basis functions of B2U symmetry. There are 8 symmetry adapted cartesian basis functions of B3U symmetry. There are 14 symmetry adapted basis functions of AG symmetry. There are 3 symmetry adapted basis functions of B1G symmetry. There are 7 symmetry adapted basis functions of B2G symmetry. There are 7 symmetry adapted basis functions of B3G symmetry. There are 3 symmetry adapted basis functions of AU symmetry. There are 14 symmetry adapted basis functions of B1U symmetry. There are 7 symmetry adapted basis functions of B2U symmetry. There are 7 symmetry adapted basis functions of B3U symmetry. 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 22.5332495585 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. 8 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 812. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 3.23D-04 NBF= 14 3 7 7 3 14 7 7 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 14 3 7 7 3 14 7 7 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) Virtual (PIG) (PIG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (SGG) (SGU) (DLTG) (DLTG) (PIU) (PIU) (PHIU) (PHIU) (SGG) (PHIG) (PHIG) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (SGU) (DLTU) (DLTU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) The electronic state of the initial guess is 1-SGG. Keep R1 ints in memory in symmetry-blocked form, NReq=5820214. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.970336202 A.U. after 12 cycles NFock= 12 Conv=0.21D-11 -V/T= 2.0049 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.22113585D+02 Semi-Direct transformation. ModeAB= 4 MOrb= 5 LenV= 1610326043 LASXX= 64996 LTotXX= 64996 LenRXX= 134115 LTotAB= 69119 MaxLAS= 449700 LenRXY= 0 NonZer= 199111 LenScr= 785920 LnRSAI= 449700 LnScr1= 1348608 LExtra= 0 Total= 2718343 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1772432972D-01 E2= -0.5006839768D-01 alpha-beta T2 = 0.9693076646D-01 E2= -0.2874988610D+00 beta-beta T2 = 0.1772432972D-01 E2= -0.5006839768D-01 ANorm= 0.1064133181D+01 E2 = -0.3876356563D+00 EUMP2 = -0.10935797185859D+03 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=5823242. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.10419871D-01 E3= 0.14989168D-01 EUMP3= -0.10934298269D+03 E4(DQ)= -0.50098326D-02 UMP4(DQ)= -0.10934799252D+03 E4(SDQ)= -0.12042763D-01 UMP4(SDQ)= -0.10935502545D+03 DE(Corr)= -0.36189541 E(Corr)= -109.33223161 NORM(A)= 0.10567778D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38048360 E(CORR)= -109.35081981 Delta=-1.86D-02 NORM(A)= 0.10637090D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37980622 E(CORR)= -109.35014242 Delta= 6.77D-04 NORM(A)= 0.10653555D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38115416 E(CORR)= -109.35149036 Delta=-1.35D-03 NORM(A)= 0.10658722D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38128887 E(CORR)= -109.35162507 Delta=-1.35D-04 NORM(A)= 0.10659299D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38130238 E(CORR)= -109.35163858 Delta=-1.35D-05 NORM(A)= 0.10659207D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38130389 E(CORR)= -109.35164009 Delta=-1.51D-06 NORM(A)= 0.10659249D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38130248 E(CORR)= -109.35163868 Delta= 1.41D-06 NORM(A)= 0.10659238D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38130330 E(CORR)= -109.35163950 Delta=-8.20D-07 NORM(A)= 0.10659241D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38130309 E(CORR)= -109.35163929 Delta= 2.06D-07 NORM(A)= 0.10659241D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38130315 E(CORR)= -109.35163936 Delta=-6.45D-08 NORM(A)= 0.10659241D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38130315 E(CORR)= -109.35163935 Delta= 3.21D-09 NORM(A)= 0.10659241D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38130315 E(CORR)= -109.35163936 Delta=-3.16D-09 NORM(A)= 0.10659241D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38130316 E(CORR)= -109.35163936 Delta=-2.41D-09 NORM(A)= 0.10659241D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38130315 E(CORR)= -109.35163936 Delta= 1.33D-09 NORM(A)= 0.10659241D+01 Iteration Nr. 16 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38130316 E(CORR)= -109.35163936 Delta=-6.44D-11 NORM(A)= 0.10659241D+01 Wavefunction amplitudes converged. E(Corr)= -109.35163936 Dominant configurations: *********************** Spin Case I J A B Value ABAB 6 6 9 9 -0.101690D+00 ABAB 7 7 8 8 -0.101690D+00 Largest amplitude= 1.02D-01 Time for triples= 13.42 seconds. T4(CCSD)= -0.21582433D-01 T5(CCSD)= 0.11148792D-02 CCSD(T)= -0.10937210691D+03 Discarding MO integrals. ********************************************************************** Population analysis using the SCF Density. ********************************************************************** Orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (SGU) (DLTG) (DLTG) (PIU) (PIU) (PHIU) (PHIU) (PHIG) (PHIG) (SGG) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (DLTU) (DLTU) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) The electronic state is 1-SGG. Alpha occ. eigenvalues -- -15.70206 -15.69943 -1.43337 -0.79555 -0.62909 Alpha occ. eigenvalues -- -0.59244 -0.59244 Alpha virt. eigenvalues -- 0.12937 0.12937 0.35985 0.37196 0.43521 Alpha virt. eigenvalues -- 0.43521 0.45355 0.58585 0.58585 0.61492 Alpha virt. eigenvalues -- 0.94647 1.05009 1.05009 1.29818 1.29818 Alpha virt. eigenvalues -- 1.49125 1.49125 1.55826 1.90816 1.90816 Alpha virt. eigenvalues -- 1.98969 2.14387 2.29525 2.30307 2.30307 Alpha virt. eigenvalues -- 2.58729 2.58729 2.84755 3.28067 3.81158 Alpha virt. eigenvalues -- 3.81158 3.94541 3.94541 3.98277 3.98277 Alpha virt. eigenvalues -- 4.40451 4.40451 4.47403 4.76077 4.76077 Alpha virt. eigenvalues -- 4.88747 4.88747 4.95668 4.95668 5.19769 Alpha virt. eigenvalues -- 5.19769 5.22928 5.34044 5.34044 6.42946 Alpha virt. eigenvalues -- 6.50615 6.50615 7.02502 32.54962 33.07756 Condensed to atoms (all electrons): 1 2 1 N 6.297286 0.702714 2 N 0.702714 6.297286 Mulliken charges: 1 1 N -0.000000 2 N -0.000000 Sum of Mulliken charges = -0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N -0.000000 2 N -0.000000 Electronic spatial extent (au): = 40.9253 Charge= -0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.0000 Y= -0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.5393 YY= -10.5393 ZZ= -11.7063 XY= 0.0000 XZ= 0.0000 YZ= -0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.3890 YY= 0.3890 ZZ= -0.7780 XY= 0.0000 XZ= 0.0000 YZ= -0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= -0.0000 XXY= -0.0000 XXZ= -0.0000 XZZ= -0.0000 YZZ= 0.0000 YYZ= -0.0000 XYZ= -0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.2784 YYYY= -9.2784 ZZZZ= -33.5560 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= -0.0000 ZZZX= 0.0000 ZZZY= -0.0000 XXYY= -3.0928 XXZZ= -6.6711 YYZZ= -6.6711 XXYZ= -0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.253324955846D+01 E-N=-3.005567147511D+02 KE= 1.084383290116D+02 Symmetry AG KE= 5.313942392844D+01 Symmetry B1G KE= 4.077183411676D-34 Symmetry B2G KE=-1.418564381461D-19 Symmetry B3G KE= 5.401527567805D-21 Symmetry AU KE= 2.578865612789D-33 Symmetry B1U KE= 4.894207824733D+01 Symmetry B2U KE= 3.178413417900D+00 Symmetry B3U KE= 3.178413417900D+00 NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- NUMERICAL EIGENVECTOR FOLLOWING MINIMUM SEARCH NUMERICALLY ESTIMATING GRADIENTS ITERATION 0 VARIABLE 1 STEP 1 NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- --------------------------------------------------------------------------------------------------- Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J --------------------------------------------------------------------------------------------------- 1 1 N 2 2 N 1 1.151048( 1) --------------------------------------------------------------------------------------------------- Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 7 0 0.000000 0.000000 1.151048 --------------------------------------------------------------------- Stoichiometry N2 Framework group D*H[C*(N.N)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.575524 2 7 0 0.000000 0.000000 -0.575524 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 54.4799389 54.4799389 Standard basis: def2TZVPP (5D, 7F) There are 17 symmetry adapted cartesian basis functions of AG symmetry. There are 3 symmetry adapted cartesian basis functions of B1G symmetry. There are 8 symmetry adapted cartesian basis functions of B2G symmetry. There are 8 symmetry adapted cartesian basis functions of B3G symmetry. There are 3 symmetry adapted cartesian basis functions of AU symmetry. There are 17 symmetry adapted cartesian basis functions of B1U symmetry. There are 8 symmetry adapted cartesian basis functions of B2U symmetry. There are 8 symmetry adapted cartesian basis functions of B3U symmetry. There are 14 symmetry adapted basis functions of AG symmetry. There are 3 symmetry adapted basis functions of B1G symmetry. There are 7 symmetry adapted basis functions of B2G symmetry. There are 7 symmetry adapted basis functions of B3G symmetry. There are 3 symmetry adapted basis functions of AU symmetry. There are 14 symmetry adapted basis functions of B1U symmetry. There are 7 symmetry adapted basis functions of B2U symmetry. There are 7 symmetry adapted basis functions of B3U symmetry. 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 22.5270131911 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. 8 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 812. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 3.24D-04 NBF= 14 3 7 7 3 14 7 7 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 14 3 7 7 3 14 7 7 Initial guess from the checkpoint file: "NN.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (SGU) (DLTG) (DLTG) (PIU) (PIU) (PHIU) (PHIU) (PHIG) (PHIG) (SGG) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (DLTU) (DLTU) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=5820214. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.970191645 A.U. after 9 cycles NFock= 9 Conv=0.23D-11 -V/T= 2.0049 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.22078981D+02 Semi-Direct transformation. ModeAB= 4 MOrb= 5 LenV= 1610326043 LASXX= 64996 LTotXX= 64996 LenRXX= 134115 LTotAB= 69119 MaxLAS= 449700 LenRXY= 0 NonZer= 199111 LenScr= 785920 LnRSAI= 449700 LnScr1= 1348608 LExtra= 0 Total= 2718343 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1773719270D-01 E2= -0.5008334666D-01 alpha-beta T2 = 0.9699213274D-01 E2= -0.2875660469D+00 beta-beta T2 = 0.1773719270D-01 E2= -0.5008334666D-01 ANorm= 0.1064174101D+01 E2 = -0.3877327402D+00 EUMP2 = -0.10935792438544D+03 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=5823242. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.10425478D-01 E3= 0.15040017D-01 EUMP3= -0.10934288437D+03 E4(DQ)= -0.50265380D-02 UMP4(DQ)= -0.10934791091D+03 E4(SDQ)= -0.12069356D-01 UMP4(SDQ)= -0.10935495372D+03 DE(Corr)= -0.36193541 E(Corr)= -109.33212706 NORM(A)= 0.10567988D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38054963 E(CORR)= -109.35074128 Delta=-1.86D-02 NORM(A)= 0.10637381D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37986826 E(CORR)= -109.35005990 Delta= 6.81D-04 NORM(A)= 0.10653871D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38121809 E(CORR)= -109.35140974 Delta=-1.35D-03 NORM(A)= 0.10659050D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38135306 E(CORR)= -109.35154471 Delta=-1.35D-04 NORM(A)= 0.10659628D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38136660 E(CORR)= -109.35155825 Delta=-1.35D-05 NORM(A)= 0.10659536D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38136812 E(CORR)= -109.35155977 Delta=-1.52D-06 NORM(A)= 0.10659578D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38136670 E(CORR)= -109.35155835 Delta= 1.42D-06 NORM(A)= 0.10659567D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38136753 E(CORR)= -109.35155917 Delta=-8.23D-07 NORM(A)= 0.10659570D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38136732 E(CORR)= -109.35155896 Delta= 2.07D-07 NORM(A)= 0.10659570D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38136738 E(CORR)= -109.35155903 Delta=-6.48D-08 NORM(A)= 0.10659570D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38136738 E(CORR)= -109.35155903 Delta= 3.30D-09 NORM(A)= 0.10659570D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38136738 E(CORR)= -109.35155903 Delta=-2.98D-09 NORM(A)= 0.10659570D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38136738 E(CORR)= -109.35155903 Delta=-1.38D-09 NORM(A)= 0.10659570D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38136738 E(CORR)= -109.35155903 Delta=-2.97D-11 NORM(A)= 0.10659570D+01 Wavefunction amplitudes converged. E(Corr)= -109.35155903 Dominant configurations: *********************** Spin Case I J A B Value ABAB 6 6 9 9 -0.101761D+00 ABAB 7 7 8 8 -0.101761D+00 Largest amplitude= 1.02D-01 Time for triples= 12.91 seconds. T4(CCSD)= -0.21597649D-01 T5(CCSD)= 0.11166856D-02 CCSD(T)= -0.10937203999D+03 Discarding MO integrals. NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- NUMERICAL EIGENVECTOR FOLLOWING MINIMUM SEARCH NUMERICALLY ESTIMATING GRADIENTS ITERATION 0 VARIABLE 1 STEP 2 NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- --------------------------------------------------------------------------------------------------- Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J --------------------------------------------------------------------------------------------------- 1 1 N 2 2 N 1 1.150411( 1) --------------------------------------------------------------------------------------------------- Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 7 0 0.000000 0.000000 1.150411 --------------------------------------------------------------------- Stoichiometry N2 Framework group D*H[C*(N.N)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.575206 2 7 0 0.000000 0.000000 -0.575206 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 54.5403011 54.5403011 Standard basis: def2TZVPP (5D, 7F) There are 17 symmetry adapted cartesian basis functions of AG symmetry. There are 3 symmetry adapted cartesian basis functions of B1G symmetry. There are 8 symmetry adapted cartesian basis functions of B2G symmetry. There are 8 symmetry adapted cartesian basis functions of B3G symmetry. There are 3 symmetry adapted cartesian basis functions of AU symmetry. There are 17 symmetry adapted cartesian basis functions of B1U symmetry. There are 8 symmetry adapted cartesian basis functions of B2U symmetry. There are 8 symmetry adapted cartesian basis functions of B3U symmetry. There are 14 symmetry adapted basis functions of AG symmetry. There are 3 symmetry adapted basis functions of B1G symmetry. There are 7 symmetry adapted basis functions of B2G symmetry. There are 7 symmetry adapted basis functions of B3G symmetry. There are 3 symmetry adapted basis functions of AU symmetry. There are 14 symmetry adapted basis functions of B1U symmetry. There are 7 symmetry adapted basis functions of B2U symmetry. There are 7 symmetry adapted basis functions of B3U symmetry. 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 22.5394893797 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. 8 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 812. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 3.22D-04 NBF= 14 3 7 7 3 14 7 7 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 14 3 7 7 3 14 7 7 Initial guess from the checkpoint file: "NN.chk" B after Tr= -0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (SGU) (DLTG) (DLTG) (PIU) (PIU) (PHIU) (PHIU) (PHIG) (PHIG) (SGG) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (DLTU) (DLTU) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=5820214. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.970480365 A.U. after 9 cycles NFock= 9 Conv=0.46D-11 -V/T= 2.0049 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.22148222D+02 Semi-Direct transformation. ModeAB= 4 MOrb= 5 LenV= 1610326043 LASXX= 64996 LTotXX= 64996 LenRXX= 134115 LTotAB= 69119 MaxLAS= 449700 LenRXY= 0 NonZer= 199111 LenScr= 785920 LnRSAI= 449700 LnScr1= 1348608 LExtra= 0 Total= 2718343 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1771147928D-01 E2= -0.5005345936D-01 alpha-beta T2 = 0.9686945355D-01 E2= -0.2874317131D+00 beta-beta T2 = 0.1771147928D-01 E2= -0.5005345936D-01 ANorm= 0.1064092295D+01 E2 = -0.3875386318D+00 EUMP2 = -0.10935801899649D+03 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=5823242. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.10414266D-01 E3= 0.14938391D-01 EUMP3= -0.10934308061D+03 E4(DQ)= -0.49931669D-02 UMP4(DQ)= -0.10934807377D+03 E4(SDQ)= -0.12016223D-01 UMP4(SDQ)= -0.10935509683D+03 DE(Corr)= -0.36185539 E(Corr)= -109.33233576 NORM(A)= 0.10567567D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38041760 E(CORR)= -109.35089797 Delta=-1.86D-02 NORM(A)= 0.10636800D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37974419 E(CORR)= -109.35022455 Delta= 6.73D-04 NORM(A)= 0.10653240D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38109025 E(CORR)= -109.35157061 Delta=-1.35D-03 NORM(A)= 0.10658395D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38122469 E(CORR)= -109.35170506 Delta=-1.34D-04 NORM(A)= 0.10658970D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38123817 E(CORR)= -109.35171854 Delta=-1.35D-05 NORM(A)= 0.10658879D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38123968 E(CORR)= -109.35172004 Delta=-1.51D-06 NORM(A)= 0.10658920D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38123827 E(CORR)= -109.35171863 Delta= 1.41D-06 NORM(A)= 0.10658909D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38123908 E(CORR)= -109.35171945 Delta=-8.17D-07 NORM(A)= 0.10658913D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38123888 E(CORR)= -109.35171924 Delta= 2.05D-07 NORM(A)= 0.10658912D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38123894 E(CORR)= -109.35171931 Delta=-6.44D-08 NORM(A)= 0.10658912D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38123894 E(CORR)= -109.35171931 Delta= 3.30D-09 NORM(A)= 0.10658912D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38123894 E(CORR)= -109.35171931 Delta=-3.27D-09 NORM(A)= 0.10658912D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38123894 E(CORR)= -109.35171931 Delta=-1.06D-09 NORM(A)= 0.10658912D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.38123894 E(CORR)= -109.35171931 Delta= 5.96D-12 NORM(A)= 0.10658912D+01 Wavefunction amplitudes converged. E(Corr)= -109.35171931 Dominant configurations: *********************** Spin Case I J A B Value ABAB 6 6 8 8 -0.101618D+00 ABAB 7 7 9 9 -0.101618D+00 Largest amplitude= 1.02D-01 Time for triples= 12.93 seconds. T4(CCSD)= -0.21567227D-01 T5(CCSD)= 0.11130751D-02 CCSD(T)= -0.10937217346D+03 Discarding MO integrals. NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- NUMERICAL EIGENVECTOR FOLLOWING MINIMUM SEARCH GRADIENT ESTIMATION COMPLETE ITERATION 1 HESSIAN EIGENVECTORS AND EIGENVALUES 1 Eigenvalues -- 1.01282 1 B1 1.00000 MINIMUM SEARCH. TAKING SIMPLE RFO STEP SEARCHING FOR LAMDA THAT MINIMIZES ALONG ALL MODES VALUE TAKEN LAMDA= -0.01199105 STEP TAKEN. STEPSIZE IS 0.108170 Current parameter values (internal coordinates) I X GRADIENT DISPLACEMENT NEWX 1 2.174564 0.110854 -0.108170 2.066394 Item Value Threshold Converged? Maximum Force 0.110854 0.000450 NO RMS Force 0.110854 0.000300 NO Maximum Displacement 0.108170 0.001800 NO RMS Displacement 0.108170 0.001200 NO PREDICTED CHANGE IN ENERGY -0.005996 NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- --------------------------------------------------------------------------------------------------- Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J --------------------------------------------------------------------------------------------------- 1 1 N 2 2 N 1 1.093489( 1) --------------------------------------------------------------------------------------------------- Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 7 0 0.000000 0.000000 1.093489 --------------------------------------------------------------------- Stoichiometry N2 Framework group D*H[C*(N.N)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.546744 2 7 0 0.000000 0.000000 -0.546744 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 60.3663878 60.3663878 Standard basis: def2TZVPP (5D, 7F) There are 17 symmetry adapted cartesian basis functions of AG symmetry. There are 3 symmetry adapted cartesian basis functions of B1G symmetry. There are 8 symmetry adapted cartesian basis functions of B2G symmetry. There are 8 symmetry adapted cartesian basis functions of B3G symmetry. There are 3 symmetry adapted cartesian basis functions of AU symmetry. There are 17 symmetry adapted cartesian basis functions of B1U symmetry. There are 8 symmetry adapted cartesian basis functions of B2U symmetry. There are 8 symmetry adapted cartesian basis functions of B3U symmetry. There are 14 symmetry adapted basis functions of AG symmetry. There are 3 symmetry adapted basis functions of B1G symmetry. There are 7 symmetry adapted basis functions of B2G symmetry. There are 7 symmetry adapted basis functions of B3G symmetry. There are 3 symmetry adapted basis functions of AU symmetry. There are 14 symmetry adapted basis functions of B1U symmetry. There are 7 symmetry adapted basis functions of B2U symmetry. There are 7 symmetry adapted basis functions of B3U symmetry. 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.7128034869 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. 8 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.05D-04 NBF= 14 3 7 7 3 14 7 7 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 14 3 7 7 3 14 7 7 Initial guess from the checkpoint file: "NN.chk" B after Tr= -0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (SGU) (DLTG) (DLTG) (PIU) (PIU) (PHIU) (PHIU) (PHIG) (PHIG) (SGG) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (DLTU) (DLTU) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=5820290. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.988913971 A.U. after 12 cycles NFock= 12 Conv=0.16D-11 -V/T= 2.0019 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.28799735D+02 Semi-Direct transformation. ModeAB= 4 MOrb= 5 LenV= 1610326015 LASXX= 64996 LTotXX= 64996 LenRXX= 134115 LTotAB= 69119 MaxLAS= 449700 LenRXY= 0 NonZer= 199111 LenScr= 785920 LnRSAI= 449700 LnScr1= 1348608 LExtra= 0 Total= 2718343 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1560583944D-01 E2= -0.4755132945D-01 alpha-beta T2 = 0.8672819480D-01 E2= -0.2760280260D+00 beta-beta T2 = 0.1560583944D-01 E2= -0.4755132945D-01 ANorm= 0.1057326758D+01 E2 = -0.3711306849D+00 EUMP2 = -0.10936004465554D+03 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=5823280. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.94552798D-02 E3= 0.69413528D-02 EUMP3= -0.10935310330D+03 E4(DQ)= -0.25788826D-02 UMP4(DQ)= -0.10935568219D+03 E4(SDQ)= -0.80227681D-02 UMP4(SDQ)= -0.10936112607D+03 DE(Corr)= -0.35450071 E(Corr)= -109.34341468 NORM(A)= 0.10530688D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36902164 E(CORR)= -109.35793561 Delta=-1.45D-02 NORM(A)= 0.10587014D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36893487 E(CORR)= -109.35784884 Delta= 8.68D-05 NORM(A)= 0.10599464D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36997913 E(CORR)= -109.35889310 Delta=-1.04D-03 NORM(A)= 0.10602877D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37007345 E(CORR)= -109.35898742 Delta=-9.43D-05 NORM(A)= 0.10603225D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008219 E(CORR)= -109.35899616 Delta=-8.74D-06 NORM(A)= 0.10603162D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008285 E(CORR)= -109.35899682 Delta=-6.62D-07 NORM(A)= 0.10603187D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008214 E(CORR)= -109.35899611 Delta= 7.09D-07 NORM(A)= 0.10603181D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008258 E(CORR)= -109.35899655 Delta=-4.38D-07 NORM(A)= 0.10603183D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008248 E(CORR)= -109.35899645 Delta= 9.99D-08 NORM(A)= 0.10603182D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008251 E(CORR)= -109.35899648 Delta=-3.22D-08 NORM(A)= 0.10603183D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008251 E(CORR)= -109.35899648 Delta= 7.99D-10 NORM(A)= 0.10603183D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008251 E(CORR)= -109.35899648 Delta=-1.58D-09 NORM(A)= 0.10603183D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008251 E(CORR)= -109.35899648 Delta= 1.28D-09 NORM(A)= 0.10603183D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008251 E(CORR)= -109.35899648 Delta=-1.19D-09 NORM(A)= 0.10603183D+01 Iteration Nr. 16 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008251 E(CORR)= -109.35899648 Delta=-1.22D-09 NORM(A)= 0.10603183D+01 Iteration Nr. 17 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008251 E(CORR)= -109.35899648 Delta= 4.96D-10 NORM(A)= 0.10603183D+01 Iteration Nr. 18 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008251 E(CORR)= -109.35899648 Delta=-2.37D-10 NORM(A)= 0.10603183D+01 Iteration Nr. 19 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008251 E(CORR)= -109.35899648 Delta= 1.76D-10 NORM(A)= 0.10603183D+01 Iteration Nr. 20 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008251 E(CORR)= -109.35899648 Delta=-1.54D-10 NORM(A)= 0.10603183D+01 Iteration Nr. 21 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37008251 E(CORR)= -109.35899648 Delta= 1.44D-11 NORM(A)= 0.10603183D+01 Wavefunction amplitudes converged. E(Corr)= -109.35899648 Largest amplitude= 8.90D-02 Time for triples= 12.83 seconds. T4(CCSD)= -0.19014792D-01 T5(CCSD)= 0.82684718D-03 CCSD(T)= -0.10937718443D+03 Discarding MO integrals. NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- NUMERICAL EIGENVECTOR FOLLOWING MINIMUM SEARCH SEARCHING FOR MINIMUM ALONG THE LINE ITERATION 1 STEP 1 TAKING A FURTHER STEP OF LENGTH 0.032451 ALONG THE SEARCH DIRECTION ALPHA = 1.300000 NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- --------------------------------------------------------------------------------------------------- Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J --------------------------------------------------------------------------------------------------- 1 1 N 2 2 N 1 1.076316( 1) --------------------------------------------------------------------------------------------------- Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 7 0 0.000000 0.000000 1.076316 --------------------------------------------------------------------- Stoichiometry N2 Framework group D*H[C*(N.N)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.538158 2 7 0 0.000000 0.000000 -0.538158 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 62.3080137 62.3080137 Standard basis: def2TZVPP (5D, 7F) There are 17 symmetry adapted cartesian basis functions of AG symmetry. There are 3 symmetry adapted cartesian basis functions of B1G symmetry. There are 8 symmetry adapted cartesian basis functions of B2G symmetry. There are 8 symmetry adapted cartesian basis functions of B3G symmetry. There are 3 symmetry adapted cartesian basis functions of AU symmetry. There are 17 symmetry adapted cartesian basis functions of B1U symmetry. There are 8 symmetry adapted cartesian basis functions of B2U symmetry. There are 8 symmetry adapted cartesian basis functions of B3U symmetry. There are 14 symmetry adapted basis functions of AG symmetry. There are 3 symmetry adapted basis functions of B1G symmetry. There are 7 symmetry adapted basis functions of B2G symmetry. There are 7 symmetry adapted basis functions of B3G symmetry. There are 3 symmetry adapted basis functions of AU symmetry. There are 14 symmetry adapted basis functions of B1U symmetry. There are 7 symmetry adapted basis functions of B2U symmetry. There are 7 symmetry adapted basis functions of B3U symmetry. 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 24.0911349765 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. 8 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 1.79D-04 NBF= 14 3 7 7 3 14 7 7 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 14 3 7 7 3 14 7 7 Initial guess from the checkpoint file: "NN.chk" B after Tr= -0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (DLTG) (DLTG) (SGU) (PIU) (PIU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (SGG) (SGU) (DLTG) (DLTG) (PHIU) (PHIU) (PIU) (PIU) (PHIG) (PHIG) (SGG) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (DLTU) (DLTU) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=5820360. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.991054981 A.U. after 11 cycles NFock= 11 Conv=0.11D-11 -V/T= 2.0008 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.30934006D+02 Semi-Direct transformation. ModeAB= 4 MOrb= 5 LenV= 1610325987 LASXX= 64996 LTotXX= 64996 LenRXX= 134115 LTotAB= 69119 MaxLAS= 449700 LenRXY= 0 NonZer= 199111 LenScr= 785920 LnRSAI= 449700 LnScr1= 1348608 LExtra= 0 Total= 2718343 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1503969538D-01 E2= -0.4685954079D-01 alpha-beta T2 = 0.8396599821D-01 E2= -0.2728115860D+00 beta-beta T2 = 0.1503969538D-01 E2= -0.4685954079D-01 ANorm= 0.1055483486D+01 E2 = -0.3665306676D+00 EUMP2 = -0.10935758564860D+03 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=5823356. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.91829432D-02 E3= 0.49121687D-02 EUMP3= -0.10935267348D+03 E4(DQ)= -0.20369992D-02 UMP4(DQ)= -0.10935471048D+03 E4(SDQ)= -0.70713130D-02 UMP4(SDQ)= -0.10935974479D+03 DE(Corr)= -0.35222639 E(Corr)= -109.34328137 NORM(A)= 0.10519890D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36573710 E(CORR)= -109.35679208 Delta=-1.35D-02 NORM(A)= 0.10572798D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36578467 E(CORR)= -109.35683965 Delta=-4.76D-05 NORM(A)= 0.10584230D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36675050 E(CORR)= -109.35780548 Delta=-9.66D-04 NORM(A)= 0.10587242D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36683507 E(CORR)= -109.35789005 Delta=-8.46D-05 NORM(A)= 0.10587541D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36684273 E(CORR)= -109.35789771 Delta=-7.66D-06 NORM(A)= 0.10587485D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36684323 E(CORR)= -109.35789821 Delta=-5.03D-07 NORM(A)= 0.10587506D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36684266 E(CORR)= -109.35789764 Delta= 5.74D-07 NORM(A)= 0.10587501D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36684302 E(CORR)= -109.35789800 Delta=-3.63D-07 NORM(A)= 0.10587502D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36684294 E(CORR)= -109.35789792 Delta= 7.92D-08 NORM(A)= 0.10587502D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36684297 E(CORR)= -109.35789795 Delta=-2.63D-08 NORM(A)= 0.10587502D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36684297 E(CORR)= -109.35789795 Delta= 2.27D-10 NORM(A)= 0.10587502D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36684297 E(CORR)= -109.35789795 Delta=-1.71D-09 NORM(A)= 0.10587502D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36684297 E(CORR)= -109.35789795 Delta=-3.48D-10 NORM(A)= 0.10587502D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36684297 E(CORR)= -109.35789795 Delta= 7.82D-14 NORM(A)= 0.10587502D+01 Wavefunction amplitudes converged. E(Corr)= -109.35789795 Largest amplitude= 8.53D-02 Time for triples= 13.52 seconds. T4(CCSD)= -0.18307077D-01 T5(CCSD)= 0.75363204D-03 CCSD(T)= -0.10937545139D+03 Discarding MO integrals. NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- NUMERICAL EIGENVECTOR FOLLOWING MINIMUM SEARCH SEARCHING FOR MINIMUM ALONG THE LINE ITERATION 1 STEP 3 PARABOLA FITTED THROUGH POINTS: ALPHA0= 0.000000 E0= -109.372106911 ALPHA1= 1.000000 E1= -109.377184428 ALPHA2= 1.300000 E2= -109.375451394 ESTIMATED MINIMUM AT ALPHA = 0.804063 NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- --------------------------------------------------------------------------------------------------- Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J --------------------------------------------------------------------------------------------------- 1 1 N 2 2 N 1 1.104704( 1) --------------------------------------------------------------------------------------------------- Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 7 0 0.000000 0.000000 1.104704 --------------------------------------------------------------------- Stoichiometry N2 Framework group D*H[C*(N.N)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.552352 2 7 0 0.000000 0.000000 -0.552352 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 59.1468523 59.1468523 Standard basis: def2TZVPP (5D, 7F) There are 17 symmetry adapted cartesian basis functions of AG symmetry. There are 3 symmetry adapted cartesian basis functions of B1G symmetry. There are 8 symmetry adapted cartesian basis functions of B2G symmetry. There are 8 symmetry adapted cartesian basis functions of B3G symmetry. There are 3 symmetry adapted cartesian basis functions of AU symmetry. There are 17 symmetry adapted cartesian basis functions of B1U symmetry. There are 8 symmetry adapted cartesian basis functions of B2U symmetry. There are 8 symmetry adapted cartesian basis functions of B3U symmetry. There are 14 symmetry adapted basis functions of AG symmetry. There are 3 symmetry adapted basis functions of B1G symmetry. There are 7 symmetry adapted basis functions of B2G symmetry. There are 7 symmetry adapted basis functions of B3G symmetry. There are 3 symmetry adapted basis functions of AU symmetry. There are 14 symmetry adapted basis functions of B1U symmetry. There are 7 symmetry adapted basis functions of B2U symmetry. There are 7 symmetry adapted basis functions of B3U symmetry. 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.4720556399 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. 8 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.24D-04 NBF= 14 3 7 7 3 14 7 7 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 14 3 7 7 3 14 7 7 Initial guess from the checkpoint file: "NN.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (DLTG) (DLTG) (SGU) (PIU) (PIU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (SGG) (SGU) (DLTG) (DLTG) (PHIU) (PHIU) (PIU) (PIU) (PHIG) (PHIG) (SGG) (DLTG) (DLTG) (PIG) (PIG) (DLTU) (DLTU) (DLTU) (DLTU) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=5820252. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.986567963 A.U. after 11 cycles NFock= 11 Conv=0.10D-11 -V/T= 2.0026 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.27427656D+02 Semi-Direct transformation. ModeAB= 4 MOrb= 5 LenV= 1610326043 LASXX= 64996 LTotXX= 64996 LenRXX= 134115 LTotAB= 69119 MaxLAS= 449700 LenRXY= 0 NonZer= 199111 LenScr= 785920 LnRSAI= 449700 LnScr1= 1348608 LExtra= 0 Total= 2718343 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1599208976D-01 E2= -0.4801858482D-01 alpha-beta T2 = 0.8860349626D-01 E2= -0.2781834724D+00 beta-beta T2 = 0.1599208976D-01 E2= -0.4801858482D-01 ANorm= 0.1058578139D+01 E2 = -0.3742206420D+00 EUMP2 = -0.10936078860529D+03 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=5823280. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.96374367D-02 E3= 0.83571291D-02 EUMP3= -0.10935243148D+03 E4(DQ)= -0.29746424D-02 UMP4(DQ)= -0.10935540612D+03 E4(SDQ)= -0.87019260D-02 UMP4(SDQ)= -0.10936113340D+03 DE(Corr)= -0.35597573 E(Corr)= -109.34254370 NORM(A)= 0.10537827D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37120494 E(CORR)= -109.35777290 Delta=-1.52D-02 NORM(A)= 0.10596500D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37102060 E(CORR)= -109.35758856 Delta= 1.84D-04 NORM(A)= 0.10609659D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37211908 E(CORR)= -109.35868704 Delta=-1.10D-03 NORM(A)= 0.10613362D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37222031 E(CORR)= -109.35878827 Delta=-1.01D-04 NORM(A)= 0.10613746D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37222983 E(CORR)= -109.35879779 Delta=-9.52D-06 NORM(A)= 0.10613679D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37223061 E(CORR)= -109.35879858 Delta=-7.86D-07 NORM(A)= 0.10613706D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37222980 E(CORR)= -109.35879776 Delta= 8.13D-07 NORM(A)= 0.10613699D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37223030 E(CORR)= -109.35879826 Delta=-4.96D-07 NORM(A)= 0.10613701D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37223018 E(CORR)= -109.35879814 Delta= 1.16D-07 NORM(A)= 0.10613701D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37223022 E(CORR)= -109.35879818 Delta=-3.70D-08 NORM(A)= 0.10613701D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37223022 E(CORR)= -109.35879818 Delta= 1.34D-09 NORM(A)= 0.10613701D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37223022 E(CORR)= -109.35879818 Delta=-1.81D-09 NORM(A)= 0.10613701D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37223022 E(CORR)= -109.35879818 Delta=-5.36D-10 NORM(A)= 0.10613701D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37223022 E(CORR)= -109.35879818 Delta=-2.28D-10 NORM(A)= 0.10613701D+01 Iteration Nr. 16 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37223022 E(CORR)= -109.35879818 Delta=-3.85D-11 NORM(A)= 0.10613701D+01 Wavefunction amplitudes converged. E(Corr)= -109.35879818 Largest amplitude= 9.15D-02 Time for triples= 13.48 seconds. T4(CCSD)= -0.19492300D-01 T5(CCSD)= 0.87780318D-03 CCSD(T)= -0.10937741268D+03 Discarding MO integrals. NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- NUMERICAL EIGENVECTOR FOLLOWING MINIMUM SEARCH SEARCHING FOR MINIMUM ALONG THE LINE ITERATION 1 STEP 4 LINE SEARCH TERMINATING NUMERICALLY ESTIMATING GRADIENTS ITERATION 1 VARIABLE 1 STEP 1 NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- --------------------------------------------------------------------------------------------------- Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J --------------------------------------------------------------------------------------------------- 1 1 N 2 2 N 1 1.105014( 1) --------------------------------------------------------------------------------------------------- Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 7 0 0.000000 0.000000 1.105014 --------------------------------------------------------------------- Stoichiometry N2 Framework group D*H[C*(N.N)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.552507 2 7 0 0.000000 0.000000 -0.552507 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 59.1136881 59.1136881 Standard basis: def2TZVPP (5D, 7F) There are 17 symmetry adapted cartesian basis functions of AG symmetry. There are 3 symmetry adapted cartesian basis functions of B1G symmetry. There are 8 symmetry adapted cartesian basis functions of B2G symmetry. There are 8 symmetry adapted cartesian basis functions of B3G symmetry. There are 3 symmetry adapted cartesian basis functions of AU symmetry. There are 17 symmetry adapted cartesian basis functions of B1U symmetry. There are 8 symmetry adapted cartesian basis functions of B2U symmetry. There are 8 symmetry adapted cartesian basis functions of B3U symmetry. There are 14 symmetry adapted basis functions of AG symmetry. There are 3 symmetry adapted basis functions of B1G symmetry. There are 7 symmetry adapted basis functions of B2G symmetry. There are 7 symmetry adapted basis functions of B3G symmetry. There are 3 symmetry adapted basis functions of AU symmetry. There are 14 symmetry adapted basis functions of B1U symmetry. There are 7 symmetry adapted basis functions of B2U symmetry. There are 7 symmetry adapted basis functions of B3U symmetry. 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.4654742134 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. 8 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.25D-04 NBF= 14 3 7 7 3 14 7 7 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 14 3 7 7 3 14 7 7 Initial guess from the checkpoint file: "NN.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (SGG) (SGU) (DLTG) (DLTG) (PHIU) (PHIU) (PIU) (PIU) (PHIG) (PHIG) (SGG) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (DLTU) (DLTU) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=5820252. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.986493215 A.U. after 9 cycles NFock= 9 Conv=0.35D-11 -V/T= 2.0026 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.27390082D+02 Semi-Direct transformation. ModeAB= 4 MOrb= 5 LenV= 1610326043 LASXX= 64996 LTotXX= 64996 LenRXX= 134115 LTotAB= 69119 MaxLAS= 449700 LenRXY= 0 NonZer= 199111 LenScr= 785920 LnRSAI= 449700 LnScr1= 1348608 LExtra= 0 Total= 2718343 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1600295058D-01 E2= -0.4803166858D-01 alpha-beta T2 = 0.8865612315D-01 E2= -0.2782436406D+00 beta-beta T2 = 0.1600295058D-01 E2= -0.4803166858D-01 ANorm= 0.1058613255D+01 E2 = -0.3743069778D+00 EUMP2 = -0.10936080019245D+03 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=5823280. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.96425168D-02 E3= 0.83972925D-02 EUMP3= -0.10935240290D+03 E4(DQ)= -0.29860764D-02 UMP4(DQ)= -0.10935538898D+03 E4(SDQ)= -0.87213730D-02 UMP4(SDQ)= -0.10936112427D+03 DE(Corr)= -0.35601634 E(Corr)= -109.34250956 NORM(A)= 0.10538026D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37126568 E(CORR)= -109.35775889 Delta=-1.52D-02 NORM(A)= 0.10596764D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37107853 E(CORR)= -109.35757175 Delta= 1.87D-04 NORM(A)= 0.10609944D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37217854 E(CORR)= -109.35867176 Delta=-1.10D-03 NORM(A)= 0.10613655D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37227997 E(CORR)= -109.35877318 Delta=-1.01D-04 NORM(A)= 0.10614040D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37228951 E(CORR)= -109.35878273 Delta=-9.54D-06 NORM(A)= 0.10613972D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37229030 E(CORR)= -109.35878352 Delta=-7.90D-07 NORM(A)= 0.10614000D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37228949 E(CORR)= -109.35878270 Delta= 8.16D-07 NORM(A)= 0.10613993D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37228998 E(CORR)= -109.35878320 Delta=-4.97D-07 NORM(A)= 0.10613995D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37228987 E(CORR)= -109.35878308 Delta= 1.16D-07 NORM(A)= 0.10613995D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37228990 E(CORR)= -109.35878312 Delta=-3.72D-08 NORM(A)= 0.10613995D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37228990 E(CORR)= -109.35878312 Delta= 1.36D-09 NORM(A)= 0.10613995D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37228990 E(CORR)= -109.35878312 Delta=-1.71D-09 NORM(A)= 0.10613995D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37228991 E(CORR)= -109.35878312 Delta=-1.33D-09 NORM(A)= 0.10613995D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37228991 E(CORR)= -109.35878312 Delta= 2.27D-10 NORM(A)= 0.10613995D+01 Iteration Nr. 16 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37228991 E(CORR)= -109.35878312 Delta= 1.70D-10 NORM(A)= 0.10613995D+01 Iteration Nr. 17 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37228991 E(CORR)= -109.35878312 Delta=-2.80D-12 NORM(A)= 0.10613995D+01 Wavefunction amplitudes converged. E(Corr)= -109.35878312 Largest amplitude= 9.15D-02 Time for triples= 13.74 seconds. T4(CCSD)= -0.19505665D-01 T5(CCSD)= 0.87924711D-03 CCSD(T)= -0.10937740954D+03 Discarding MO integrals. NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- NUMERICAL EIGENVECTOR FOLLOWING MINIMUM SEARCH GRADIENT ESTIMATION COMPLETE Hessian updated using Powell update ITERATION 2 HESSIAN EIGENVECTORS AND EIGENVALUES 1 Eigenvalues -- 1.21628 1 B1 1.00000 MINIMUM SEARCH. TAKING SIMPLE RFO STEP SEARCHING FOR LAMDA THAT MINIMIZES ALONG ALL MODES VALUE TAKEN LAMDA= -0.00002111 STEP TAKEN. STEPSIZE IS 0.004166 Current parameter values (internal coordinates) I X GRADIENT DISPLACEMENT NEWX 1 2.087589 0.005067 -0.004166 2.083423 Item Value Threshold Converged? Maximum Force 0.005067 0.000450 NO RMS Force 0.005067 0.000300 NO Maximum Displacement 0.004166 0.001800 NO RMS Displacement 0.004166 0.001200 NO PREDICTED CHANGE IN ENERGY -0.000011 NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- --------------------------------------------------------------------------------------------------- Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J --------------------------------------------------------------------------------------------------- 1 1 N 2 2 N 1 1.102500( 1) --------------------------------------------------------------------------------------------------- Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 7 0 0.000000 0.000000 1.102500 --------------------------------------------------------------------- Stoichiometry N2 Framework group D*H[C*(N.N)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.551250 2 7 0 0.000000 0.000000 -0.551250 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 59.3836072 59.3836072 Standard basis: def2TZVPP (5D, 7F) There are 17 symmetry adapted cartesian basis functions of AG symmetry. There are 3 symmetry adapted cartesian basis functions of B1G symmetry. There are 8 symmetry adapted cartesian basis functions of B2G symmetry. There are 8 symmetry adapted cartesian basis functions of B3G symmetry. There are 3 symmetry adapted cartesian basis functions of AU symmetry. There are 17 symmetry adapted cartesian basis functions of B1U symmetry. There are 8 symmetry adapted cartesian basis functions of B2U symmetry. There are 8 symmetry adapted cartesian basis functions of B3U symmetry. There are 14 symmetry adapted basis functions of AG symmetry. There are 3 symmetry adapted basis functions of B1G symmetry. There are 7 symmetry adapted basis functions of B2G symmetry. There are 7 symmetry adapted basis functions of B3G symmetry. There are 3 symmetry adapted basis functions of AU symmetry. There are 14 symmetry adapted basis functions of B1U symmetry. There are 7 symmetry adapted basis functions of B2U symmetry. There are 7 symmetry adapted basis functions of B3U symmetry. 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.5189860671 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. 8 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.20D-04 NBF= 14 3 7 7 3 14 7 7 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 14 3 7 7 3 14 7 7 Initial guess from the checkpoint file: "NN.chk" B after Tr= -0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (SGG) (SGU) (DLTG) (DLTG) (PHIU) (PHIU) (PIU) (PIU) (PHIG) (PHIG) (SGG) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (DLTU) (DLTU) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=5820290. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.987084662 A.U. after 10 cycles NFock= 10 Conv=0.30D-11 -V/T= 2.0024 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.27695527D+02 Semi-Direct transformation. ModeAB= 4 MOrb= 5 LenV= 1610326015 LASXX= 64996 LTotXX= 64996 LenRXX= 134115 LTotAB= 69119 MaxLAS= 449700 LenRXY= 0 NonZer= 199111 LenScr= 785920 LnRSAI= 449700 LnScr1= 1348608 LExtra= 0 Total= 2718343 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1591511862D-01 E2= -0.4792577390D-01 alpha-beta T2 = 0.8823036581D-01 E2= -0.2777563757D+00 beta-beta T2 = 0.1591511862D-01 E2= -0.4792577390D-01 ANorm= 0.1058329156D+01 E2 = -0.3736079235D+00 EUMP2 = -0.10936069258537D+03 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=5823280. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.96013684D-02 E3= 0.80730368D-02 EUMP3= -0.10935261955D+03 E4(DQ)= -0.28940888D-02 UMP4(DQ)= -0.10935551364D+03 E4(SDQ)= -0.85646521D-02 UMP4(SDQ)= -0.10936118420D+03 DE(Corr)= -0.35568660 E(Corr)= -109.34277126 NORM(A)= 0.10536419D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37077344 E(CORR)= -109.35785810 Delta=-1.51D-02 NORM(A)= 0.10594623D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37060892 E(CORR)= -109.35769358 Delta= 1.65D-04 NORM(A)= 0.10607640D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37169655 E(CORR)= -109.35878121 Delta=-1.09D-03 NORM(A)= 0.10611284D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37179638 E(CORR)= -109.35888105 Delta=-9.98D-05 NORM(A)= 0.10611661D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37180575 E(CORR)= -109.35889041 Delta=-9.36D-06 NORM(A)= 0.10611594D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37180651 E(CORR)= -109.35889117 Delta=-7.60D-07 NORM(A)= 0.10611621D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37180572 E(CORR)= -109.35889038 Delta= 7.91D-07 NORM(A)= 0.10611614D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37180620 E(CORR)= -109.35889086 Delta=-4.84D-07 NORM(A)= 0.10611616D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37180609 E(CORR)= -109.35889075 Delta= 1.13D-07 NORM(A)= 0.10611616D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37180612 E(CORR)= -109.35889078 Delta=-3.60D-08 NORM(A)= 0.10611616D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37180612 E(CORR)= -109.35889078 Delta= 1.20D-09 NORM(A)= 0.10611616D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37180612 E(CORR)= -109.35889078 Delta=-1.92D-09 NORM(A)= 0.10611616D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37180612 E(CORR)= -109.35889079 Delta=-5.03D-10 NORM(A)= 0.10611616D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37180612 E(CORR)= -109.35889079 Delta=-1.65D-10 NORM(A)= 0.10611616D+01 Iteration Nr. 16 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37180612 E(CORR)= -109.35889079 Delta=-4.97D-11 NORM(A)= 0.10611616D+01 Wavefunction amplitudes converged. E(Corr)= -109.35889079 Largest amplitude= 9.10D-02 Time for triples= 14.12 seconds. T4(CCSD)= -0.19397485D-01 T5(CCSD)= 0.86758714D-03 CCSD(T)= -0.10937742068D+03 Discarding MO integrals. NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- NUMERICAL EIGENVECTOR FOLLOWING MINIMUM SEARCH SEARCHING FOR MINIMUM ALONG THE LINE ITERATION 2 STEP 1 TAKING A FURTHER STEP OF LENGTH 0.001250 ALONG THE SEARCH DIRECTION ALPHA = 1.300000 NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- --------------------------------------------------------------------------------------------------- Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J --------------------------------------------------------------------------------------------------- 1 1 N 2 2 N 1 1.101839( 1) --------------------------------------------------------------------------------------------------- Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 7 0 0.000000 0.000000 1.101839 --------------------------------------------------------------------- Stoichiometry N2 Framework group D*H[C*(N.N)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.550919 2 7 0 0.000000 0.000000 -0.550919 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 59.4549109 59.4549109 Standard basis: def2TZVPP (5D, 7F) There are 17 symmetry adapted cartesian basis functions of AG symmetry. There are 3 symmetry adapted cartesian basis functions of B1G symmetry. There are 8 symmetry adapted cartesian basis functions of B2G symmetry. There are 8 symmetry adapted cartesian basis functions of B3G symmetry. There are 3 symmetry adapted cartesian basis functions of AU symmetry. There are 17 symmetry adapted cartesian basis functions of B1U symmetry. There are 8 symmetry adapted cartesian basis functions of B2U symmetry. There are 8 symmetry adapted cartesian basis functions of B3U symmetry. There are 14 symmetry adapted basis functions of AG symmetry. There are 3 symmetry adapted basis functions of B1G symmetry. There are 7 symmetry adapted basis functions of B2G symmetry. There are 7 symmetry adapted basis functions of B3G symmetry. There are 3 symmetry adapted basis functions of AU symmetry. There are 14 symmetry adapted basis functions of B1U symmetry. There are 7 symmetry adapted basis functions of B2U symmetry. There are 7 symmetry adapted basis functions of B3U symmetry. 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.5331018123 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. 8 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.19D-04 NBF= 14 3 7 7 3 14 7 7 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 14 3 7 7 3 14 7 7 Initial guess from the checkpoint file: "NN.chk" B after Tr= -0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (SGG) (SGU) (DLTG) (DLTG) (PHIU) (PHIU) (PIU) (PIU) (PHIG) (PHIG) (SGG) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (DLTU) (DLTU) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=5820290. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.987234469 A.U. after 9 cycles NFock= 9 Conv=0.78D-11 -V/T= 2.0024 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.27776073D+02 Semi-Direct transformation. ModeAB= 4 MOrb= 5 LenV= 1610326015 LASXX= 64996 LTotXX= 64996 LenRXX= 134115 LTotAB= 69119 MaxLAS= 449700 LenRXY= 0 NonZer= 199111 LenScr= 785920 LnRSAI= 449700 LnScr1= 1348608 LExtra= 0 Total= 2718343 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1589212893D-01 E2= -0.4789802406D-01 alpha-beta T2 = 0.8811886451D-01 E2= -0.2776285782D+00 beta-beta T2 = 0.1589212893D-01 E2= -0.4789802406D-01 ANorm= 0.1058254753D+01 E2 = -0.3734246263D+00 EUMP2 = -0.10936065909557D+03 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=5823280. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.95905733D-02 E3= 0.79883714D-02 EUMP3= -0.10935267072D+03 E4(DQ)= -0.28701920D-02 UMP4(DQ)= -0.10935554092D+03 E4(SDQ)= -0.85238375D-02 UMP4(SDQ)= -0.10936119456D+03 DE(Corr)= -0.35559978 E(Corr)= -109.34283425 NORM(A)= 0.10535997D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37064422 E(CORR)= -109.35787869 Delta=-1.50D-02 NORM(A)= 0.10594061D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37048558 E(CORR)= -109.35772005 Delta= 1.59D-04 NORM(A)= 0.10607036D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37156998 E(CORR)= -109.35880444 Delta=-1.08D-03 NORM(A)= 0.10610662D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37166940 E(CORR)= -109.35890387 Delta=-9.94D-05 NORM(A)= 0.10611037D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37167871 E(CORR)= -109.35891318 Delta=-9.31D-06 NORM(A)= 0.10610971D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37167946 E(CORR)= -109.35891393 Delta=-7.53D-07 NORM(A)= 0.10610997D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37167868 E(CORR)= -109.35891315 Delta= 7.85D-07 NORM(A)= 0.10610990D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37167916 E(CORR)= -109.35891363 Delta=-4.80D-07 NORM(A)= 0.10610992D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37167905 E(CORR)= -109.35891352 Delta= 1.12D-07 NORM(A)= 0.10610992D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37167908 E(CORR)= -109.35891355 Delta=-3.57D-08 NORM(A)= 0.10610992D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37167908 E(CORR)= -109.35891355 Delta= 1.21D-09 NORM(A)= 0.10610992D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37167908 E(CORR)= -109.35891355 Delta=-1.71D-09 NORM(A)= 0.10610992D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37167908 E(CORR)= -109.35891355 Delta=-6.92D-10 NORM(A)= 0.10610992D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37167908 E(CORR)= -109.35891355 Delta=-7.89D-11 NORM(A)= 0.10610992D+01 Wavefunction amplitudes converged. E(Corr)= -109.35891355 Largest amplitude= 9.08D-02 Time for triples= 13.35 seconds. T4(CCSD)= -0.19369133D-01 T5(CCSD)= 0.86454166D-03 CCSD(T)= -0.10937741814D+03 Discarding MO integrals. NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- NUMERICAL EIGENVECTOR FOLLOWING MINIMUM SEARCH SEARCHING FOR MINIMUM ALONG THE LINE ITERATION 2 STEP 3 PARABOLA FITTED THROUGH POINTS: ALPHA0= 0.000000 E0= -109.377412678 ALPHA1= 1.000000 E1= -109.377420683 ALPHA2= 1.300000 E2= -109.377418144 ESTIMATED MINIMUM AT ALPHA = 0.815927 NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- --------------------------------------------------------------------------------------------------- Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J --------------------------------------------------------------------------------------------------- 1 1 N 2 2 N 1 1.102906( 1) --------------------------------------------------------------------------------------------------- Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 7 0 0.000000 0.000000 1.102906 --------------------------------------------------------------------- Stoichiometry N2 Framework group D*H[C*(N.N)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.551453 2 7 0 0.000000 0.000000 -0.551453 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 59.3399203 59.3399203 Standard basis: def2TZVPP (5D, 7F) There are 17 symmetry adapted cartesian basis functions of AG symmetry. There are 3 symmetry adapted cartesian basis functions of B1G symmetry. There are 8 symmetry adapted cartesian basis functions of B2G symmetry. There are 8 symmetry adapted cartesian basis functions of B3G symmetry. There are 3 symmetry adapted cartesian basis functions of AU symmetry. There are 17 symmetry adapted cartesian basis functions of B1U symmetry. There are 8 symmetry adapted cartesian basis functions of B2U symmetry. There are 8 symmetry adapted cartesian basis functions of B3U symmetry. There are 14 symmetry adapted basis functions of AG symmetry. There are 3 symmetry adapted basis functions of B1G symmetry. There are 7 symmetry adapted basis functions of B2G symmetry. There are 7 symmetry adapted basis functions of B3G symmetry. There are 3 symmetry adapted basis functions of AU symmetry. There are 14 symmetry adapted basis functions of B1U symmetry. There are 7 symmetry adapted basis functions of B2U symmetry. There are 7 symmetry adapted basis functions of B3U symmetry. 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.5103333373 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. 8 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.21D-04 NBF= 14 3 7 7 3 14 7 7 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 14 3 7 7 3 14 7 7 Initial guess from the checkpoint file: "NN.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (SGG) (SGU) (DLTG) (DLTG) (PHIU) (PHIU) (PIU) (PIU) (PHIG) (PHIG) (SGG) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (DLTU) (DLTU) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=5820290. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.986991550 A.U. after 10 cycles NFock= 10 Conv=0.13D-11 -V/T= 2.0024 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.27646148D+02 Semi-Direct transformation. ModeAB= 4 MOrb= 5 LenV= 1610326015 LASXX= 64996 LTotXX= 64996 LenRXX= 134115 LTotAB= 69119 MaxLAS= 449700 LenRXY= 0 NonZer= 199111 LenScr= 785920 LnRSAI= 449700 LnScr1= 1348608 LExtra= 0 Total= 2718343 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1592924777D-01 E2= -0.4794282191D-01 alpha-beta T2 = 0.8829888041D-01 E2= -0.2778348651D+00 beta-beta T2 = 0.1592924777D-01 E2= -0.4794282191D-01 ANorm= 0.1058374875D+01 E2 = -0.3737205089D+00 EUMP2 = -0.10936071205874D+03 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=5823280. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.96079978D-02 E3= 0.81251138D-02 EUMP3= -0.10935258694D+03 E4(DQ)= -0.29088126D-02 UMP4(DQ)= -0.10935549576D+03 E4(SDQ)= -0.85897788D-02 UMP4(SDQ)= -0.10936117672D+03 DE(Corr)= -0.35573985 E(Corr)= -109.34273140 NORM(A)= 0.10536678D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37085278 E(CORR)= -109.35784433 Delta=-1.51D-02 NORM(A)= 0.10594968D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37068464 E(CORR)= -109.35767619 Delta= 1.68D-04 NORM(A)= 0.10608011D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37177425 E(CORR)= -109.35876580 Delta=-1.09D-03 NORM(A)= 0.10611666D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37187435 E(CORR)= -109.35886589 Delta=-1.00D-04 NORM(A)= 0.10612044D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188374 E(CORR)= -109.35887529 Delta=-9.39D-06 NORM(A)= 0.10611977D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188450 E(CORR)= -109.35887605 Delta=-7.65D-07 NORM(A)= 0.10612004D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188371 E(CORR)= -109.35887526 Delta= 7.95D-07 NORM(A)= 0.10611997D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188419 E(CORR)= -109.35887574 Delta=-4.86D-07 NORM(A)= 0.10611999D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188408 E(CORR)= -109.35887563 Delta= 1.13D-07 NORM(A)= 0.10611999D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta=-3.62D-08 NORM(A)= 0.10611999D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta= 1.30D-09 NORM(A)= 0.10611999D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta=-1.77D-09 NORM(A)= 0.10611999D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887567 Delta=-6.25D-10 NORM(A)= 0.10611999D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887567 Delta=-1.77D-10 NORM(A)= 0.10611999D+01 Iteration Nr. 16 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887567 Delta= 9.38D-12 NORM(A)= 0.10611999D+01 Wavefunction amplitudes converged. E(Corr)= -109.35887567 Largest amplitude= 9.11D-02 Time for triples= 13.64 seconds. T4(CCSD)= -0.19414902D-01 T5(CCSD)= 0.86946018D-03 CCSD(T)= -0.10937742111D+03 Discarding MO integrals. NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- NUMERICAL EIGENVECTOR FOLLOWING MINIMUM SEARCH SEARCHING FOR MINIMUM ALONG THE LINE ITERATION 2 STEP 4 LINE SEARCH TERMINATING NUMERICALLY ESTIMATING GRADIENTS ITERATION 2 VARIABLE 1 STEP 1 NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- --------------------------------------------------------------------------------------------------- Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J --------------------------------------------------------------------------------------------------- 1 1 N 2 2 N 1 1.103215( 1) --------------------------------------------------------------------------------------------------- Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 7 0 0.000000 0.000000 1.103215 --------------------------------------------------------------------- Stoichiometry N2 Framework group D*H[C*(N.N)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.551608 2 7 0 0.000000 0.000000 -0.551608 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 59.3066303 59.3066303 Standard basis: def2TZVPP (5D, 7F) There are 17 symmetry adapted cartesian basis functions of AG symmetry. There are 3 symmetry adapted cartesian basis functions of B1G symmetry. There are 8 symmetry adapted cartesian basis functions of B2G symmetry. There are 8 symmetry adapted cartesian basis functions of B3G symmetry. There are 3 symmetry adapted cartesian basis functions of AU symmetry. There are 17 symmetry adapted cartesian basis functions of B1U symmetry. There are 8 symmetry adapted cartesian basis functions of B2U symmetry. There are 8 symmetry adapted cartesian basis functions of B3U symmetry. There are 14 symmetry adapted basis functions of AG symmetry. There are 3 symmetry adapted basis functions of B1G symmetry. There are 7 symmetry adapted basis functions of B2G symmetry. There are 7 symmetry adapted basis functions of B3G symmetry. There are 3 symmetry adapted basis functions of AU symmetry. There are 14 symmetry adapted basis functions of B1U symmetry. There are 7 symmetry adapted basis functions of B2U symmetry. There are 7 symmetry adapted basis functions of B3U symmetry. 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.5037376971 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. 8 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.21D-04 NBF= 14 3 7 7 3 14 7 7 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 14 3 7 7 3 14 7 7 Initial guess from the checkpoint file: "NN.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (SGG) (SGU) (DLTG) (DLTG) (PHIU) (PHIU) (PIU) (PIU) (PHIG) (PHIG) (SGG) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (DLTU) (DLTU) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=5820290. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.986919920 A.U. after 9 cycles NFock= 9 Conv=0.36D-11 -V/T= 2.0025 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.27608505D+02 Semi-Direct transformation. ModeAB= 4 MOrb= 5 LenV= 1610326015 LASXX= 64996 LTotXX= 64996 LenRXX= 134115 LTotAB= 69119 MaxLAS= 449700 LenRXY= 0 NonZer= 199111 LenScr= 785920 LnRSAI= 449700 LnScr1= 1348608 LExtra= 0 Total= 2718343 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1594003672D-01 E2= -0.4795583630D-01 alpha-beta T2 = 0.8835119144D-01 E2= -0.2778947721D+00 beta-beta T2 = 0.1594003672D-01 E2= -0.4795583630D-01 ANorm= 0.1058409781D+01 E2 = -0.3738064447D+00 EUMP2 = -0.10936072636441D+03 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=5823280. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.96130574D-02 E3= 0.81649015D-02 EUMP3= -0.10935256146D+03 E4(DQ)= -0.29200747D-02 UMP4(DQ)= -0.10935548154D+03 E4(SDQ)= -0.86089871D-02 UMP4(SDQ)= -0.10936117045D+03 DE(Corr)= -0.35578046 E(Corr)= -109.34270038 NORM(A)= 0.10536876D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37091332 E(CORR)= -109.35783324 Delta=-1.51D-02 NORM(A)= 0.10595231D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37074241 E(CORR)= -109.35766233 Delta= 1.71D-04 NORM(A)= 0.10608294D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37183355 E(CORR)= -109.35875347 Delta=-1.09D-03 NORM(A)= 0.10611957D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37193383 E(CORR)= -109.35885375 Delta=-1.00D-04 NORM(A)= 0.10612337D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37194324 E(CORR)= -109.35886316 Delta=-9.41D-06 NORM(A)= 0.10612270D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37194401 E(CORR)= -109.35886393 Delta=-7.68D-07 NORM(A)= 0.10612297D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37194321 E(CORR)= -109.35886313 Delta= 7.98D-07 NORM(A)= 0.10612290D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37194370 E(CORR)= -109.35886362 Delta=-4.88D-07 NORM(A)= 0.10612292D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37194359 E(CORR)= -109.35886351 Delta= 1.14D-07 NORM(A)= 0.10612292D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37194363 E(CORR)= -109.35886354 Delta=-3.64D-08 NORM(A)= 0.10612292D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37194362 E(CORR)= -109.35886354 Delta= 1.44D-09 NORM(A)= 0.10612292D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37194363 E(CORR)= -109.35886355 Delta=-1.76D-09 NORM(A)= 0.10612292D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37194363 E(CORR)= -109.35886355 Delta=-6.39D-10 NORM(A)= 0.10612292D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37194363 E(CORR)= -109.35886355 Delta=-2.09D-10 NORM(A)= 0.10612292D+01 Iteration Nr. 16 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37194363 E(CORR)= -109.35886355 Delta=-3.65D-11 NORM(A)= 0.10612292D+01 Wavefunction amplitudes converged. E(Corr)= -109.35886355 Largest amplitude= 9.11D-02 Time for triples= 13.53 seconds. T4(CCSD)= -0.19428198D-01 T5(CCSD)= 0.87089112D-03 CCSD(T)= -0.10937742085D+03 Discarding MO integrals. NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- NUMERICAL EIGENVECTOR FOLLOWING MINIMUM SEARCH GRADIENT ESTIMATION COMPLETE Hessian updated using Powell update ITERATION 3 HESSIAN EIGENVECTORS AND EIGENVALUES 1 Eigenvalues -- 1.46751 1 B1 1.00000 MINIMUM SEARCH. TAKING SIMPLE RFO STEP SEARCHING FOR LAMDA THAT MINIMIZES ALONG ALL MODES VALUE TAKEN LAMDA= 0.00000000 STEP TAKEN. STEPSIZE IS 0.000054 Current parameter values (internal coordinates) I X GRADIENT DISPLACEMENT NEWX 1 2.084190 0.000079 -0.000054 2.084136 Item Value Threshold Converged? Maximum Force 0.000079 0.000450 YES RMS Force 0.000079 0.000300 YES Maximum Displacement 0.000054 0.001800 YES RMS Displacement 0.000054 0.001200 YES ************************************************* ** CONVERGENCE CRITERIA APPARENTLY SATISFIED ** ************************************************* ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! ---------------------- ---------------------- ! Name Value Derivative information (Atomic Units) ! ------------------------------------------------------------------------ ! B1 1.1029 -DE/DX = 0.0001 ! ------------------------------------------------------------------------ PREDICTED CHANGE IN ENERGY -0.000000 NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF-NEF- --------------------------------------------------------------------------------------------------- Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J --------------------------------------------------------------------------------------------------- 1 1 N 2 2 N 1 1.102906( 1) --------------------------------------------------------------------------------------------------- Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 7 0 0.000000 0.000000 1.102906 --------------------------------------------------------------------- Stoichiometry N2 Framework group D*H[C*(N.N)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.551453 2 7 0 0.000000 0.000000 -0.551453 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 59.3399203 59.3399203 ********************************************************************** Population analysis using the SCF Density. ********************************************************************** Orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (SGG) (SGU) (DLTG) (DLTG) (PHIU) (PHIU) (PIU) (PIU) (PHIG) (PHIG) (SGG) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (DLTU) (DLTU) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) The electronic state is 1-SGG. Alpha occ. eigenvalues -- -15.68557 -15.68215 -1.46737 -0.78032 -0.63365 Alpha occ. eigenvalues -- -0.61166 -0.61166 Alpha virt. eigenvalues -- 0.15121 0.15121 0.36327 0.37870 0.42983 Alpha virt. eigenvalues -- 0.42983 0.45039 0.59589 0.59589 0.62047 Alpha virt. eigenvalues -- 1.03253 1.04715 1.04715 1.32718 1.32718 Alpha virt. eigenvalues -- 1.50939 1.50939 1.54284 1.92794 1.92794 Alpha virt. eigenvalues -- 2.01073 2.15129 2.30453 2.30453 2.33458 Alpha virt. eigenvalues -- 2.59139 2.59139 2.89495 3.17578 3.82513 Alpha virt. eigenvalues -- 3.82513 3.95917 3.95917 3.98595 3.98595 Alpha virt. eigenvalues -- 4.44133 4.44133 4.53649 4.76930 4.76930 Alpha virt. eigenvalues -- 4.90449 4.90449 4.92727 4.92727 5.29566 Alpha virt. eigenvalues -- 5.29566 5.35060 5.40823 5.40823 6.60549 Alpha virt. eigenvalues -- 6.65990 6.65990 6.99775 32.51558 33.29223 Condensed to atoms (all electrons): 1 2 1 N 6.261972 0.738028 2 N 0.738028 6.261972 Mulliken charges: 1 1 N 0.000000 2 N 0.000000 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N 0.000000 2 N 0.000000 Electronic spatial extent (au): = 39.3217 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.0000 Y= -0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.3663 YY= -10.3663 ZZ= -11.7072 XY= 0.0000 XZ= 0.0000 YZ= -0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.4470 YY= 0.4470 ZZ= -0.8940 XY= 0.0000 XZ= 0.0000 YZ= -0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0000 YYY= -0.0000 ZZZ= -0.0000 XYY= -0.0000 XXY= -0.0000 XXZ= 0.0000 XZZ= -0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= -0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -8.9615 YYYY= -8.9615 ZZZZ= -31.7428 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= -0.0000 ZZZX= 0.0000 ZZZY= -0.0000 XXYY= -2.9872 XXZZ= -6.3247 YYZZ= -6.3247 XXYZ= -0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.351033333729D+01 E-N=-3.027553376431D+02 KE= 1.087187572920D+02 Symmetry AG KE= 5.335494221890D+01 Symmetry B1G KE= 4.585300934374D-34 Symmetry B2G KE=-7.047334919799D-20 Symmetry B3G KE= 1.182970370040D-20 Symmetry AU KE= 3.311074107275D-33 Symmetry B1U KE= 4.888896073490D+01 Symmetry B2U KE= 3.237427169079D+00 Symmetry B3U KE= 3.237427169079D+00 1\1\GINC-CH-RZEPA-PRO\FOpt\RCCSD(T)-FC\def2TZVPP\N2\ROOT\23-May-2020\1 \\# opt freq ccsd=(t,conver=10,maxcycles=2048)/def2tzvpp scf=(conver=1 1,maxcycles=1024)\\HIJZUW\\0,1\N\N,1,B1\\B1=1.10290581\\Version=EM64M- G16RevB.01\State=1-SGG\HF=-108.9869915\MP2=-109.3607121\MP3=-109.35258 69\MP4D=-109.3651038\MP4DQ=-109.3554958\MP4SDQ=-109.3611767\CCSD=-109. 3588757\CCSD(T)=-109.3774211\RMSD=1.257e-12\RMSF=7.883e-05\PG=D*H [C*( N1.N1)]\\@ DEFINE YOUR TERMS, YOU WILL PERMIT ME AGAIN TO SAY, OR WE SHALL NEVER UNDERSTAND ONE ANOTHER. -- VOLTAIRE Job cpu time: 0 days 0 hours 7 minutes 31.2 seconds. Elapsed time: 0 days 0 hours 1 minutes 4.6 seconds. File lengths (MBytes): RWF= 28 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 16 at Sat May 23 19:19:36 2020. Link1: Proceeding to internal job step number 2. ---------------------------------------------------------------------- #N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RCCSD(T)(FC)/def2TZVPP Freq ---------------------------------------------------------------------- Warning: this job cannot use analytic gradients and so will do many energy evaluations. 1/10=4,29=7,30=1,38=21,40=1/1,10,3; 2/12=2,40=1/2; 3/5=44,7=202,11=1,14=-4,25=1,30=1,70=2,116=1/1,2,3; 4/5=101,69=2/1; 5/5=2,6=11,7=1024,38=6,98=1/2; 8/6=4,9=120000,10=1/1,4; 9/5=7,6=2048,9=10,14=2/13; 6/7=2,8=2,9=2,10=2/1; 1/38=20/10(3); 7/8=1,25=1,44=-1/16; 1/10=4,30=1,38=20/3; 99//99; 3/5=44,7=202,11=1,14=-2,25=1,30=1,70=5,116=1/1,2,3; 4/5=5,16=3,69=2/1; 5/5=2,6=11,7=1024,38=5,98=1/2; 8/6=4,9=120000,10=1/1,4; 9/5=7,6=2048,9=10,14=2/13; 6/7=2,8=2,9=2,10=2/1; 1/38=20/10(-6); 7/8=1,25=1,44=-1/16; 1/10=4,30=1,38=20/3; 99//99; Structure from the checkpoint file: "NN.chk" ------ HIJZUW ------ Charge = 0 Multiplicity = 1 Z-Matrix found in chk file. N N,1,B1 Variables: B1=1.10290581 Recover connectivity data from disk. Numerical differentiation of energy to produce force constants. Step-Size= 0.010000 angstroms, NStep=1. Leave EnFreq: IXYZ= 0 JXYZ= 0 IStep= 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! ---------------------- ---------------------- ! Name Value Derivative information (Atomic Units) ! ------------------------------------------------------------------------ ! B1 1.1029 calculate D2E/DX2 analytically ! ------------------------------------------------------------------------ Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 EigMax=2.50D+02 EigMin=1.00D-04 Number of steps in this run= 2 maximum allowed number of steps= 2. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 7 0 0.000000 0.000000 1.102906 --------------------------------------------------------------------- Stoichiometry N2 Framework group D*H[C*(N.N)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.551453 2 7 0 0.000000 0.000000 -0.551453 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 59.3399203 59.3399203 Standard basis: def2TZVPP (5D, 7F) There are 17 symmetry adapted cartesian basis functions of AG symmetry. There are 3 symmetry adapted cartesian basis functions of B1G symmetry. There are 8 symmetry adapted cartesian basis functions of B2G symmetry. There are 8 symmetry adapted cartesian basis functions of B3G symmetry. There are 3 symmetry adapted cartesian basis functions of AU symmetry. There are 17 symmetry adapted cartesian basis functions of B1U symmetry. There are 8 symmetry adapted cartesian basis functions of B2U symmetry. There are 8 symmetry adapted cartesian basis functions of B3U symmetry. There are 14 symmetry adapted basis functions of AG symmetry. There are 3 symmetry adapted basis functions of B1G symmetry. There are 7 symmetry adapted basis functions of B2G symmetry. There are 7 symmetry adapted basis functions of B3G symmetry. There are 3 symmetry adapted basis functions of AU symmetry. There are 14 symmetry adapted basis functions of B1U symmetry. There are 7 symmetry adapted basis functions of B2U symmetry. There are 7 symmetry adapted basis functions of B3U symmetry. 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.5103333373 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. 8 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.21D-04 NBF= 14 3 7 7 3 14 7 7 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 14 3 7 7 3 14 7 7 Initial guess from the checkpoint file: "NN.chk" B after Tr= -0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (SGG) (SGU) (DLTG) (DLTG) (PHIU) (PHIU) (PIU) (PIU) (PHIG) (PHIG) (SGG) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (DLTU) (DLTU) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) Keep R1 ints in memory in symmetry-blocked form, NReq=5820290. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.986991550 A.U. after 9 cycles NFock= 9 Conv=0.36D-11 -V/T= 2.0024 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.27646148D+02 Semi-Direct transformation. ModeAB= 4 MOrb= 5 LenV= 1610326015 LASXX= 64996 LTotXX= 64996 LenRXX= 134115 LTotAB= 69119 MaxLAS= 449700 LenRXY= 0 NonZer= 199111 LenScr= 785920 LnRSAI= 449700 LnScr1= 1348608 LExtra= 0 Total= 2718343 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1592924777D-01 E2= -0.4794282191D-01 alpha-beta T2 = 0.8829888041D-01 E2= -0.2778348651D+00 beta-beta T2 = 0.1592924777D-01 E2= -0.4794282191D-01 ANorm= 0.1058374875D+01 E2 = -0.3737205089D+00 EUMP2 = -0.10936071205874D+03 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=5823280. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.96079978D-02 E3= 0.81251138D-02 EUMP3= -0.10935258694D+03 E4(DQ)= -0.29088126D-02 UMP4(DQ)= -0.10935549576D+03 E4(SDQ)= -0.85897788D-02 UMP4(SDQ)= -0.10936117672D+03 DE(Corr)= -0.35573985 E(Corr)= -109.34273140 NORM(A)= 0.10536678D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37085278 E(CORR)= -109.35784433 Delta=-1.51D-02 NORM(A)= 0.10594968D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37068464 E(CORR)= -109.35767619 Delta= 1.68D-04 NORM(A)= 0.10608011D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37177425 E(CORR)= -109.35876580 Delta=-1.09D-03 NORM(A)= 0.10611666D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37187435 E(CORR)= -109.35886589 Delta=-1.00D-04 NORM(A)= 0.10612044D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188374 E(CORR)= -109.35887529 Delta=-9.39D-06 NORM(A)= 0.10611977D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188450 E(CORR)= -109.35887605 Delta=-7.65D-07 NORM(A)= 0.10612004D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188371 E(CORR)= -109.35887526 Delta= 7.95D-07 NORM(A)= 0.10611997D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188419 E(CORR)= -109.35887574 Delta=-4.86D-07 NORM(A)= 0.10611999D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188408 E(CORR)= -109.35887563 Delta= 1.13D-07 NORM(A)= 0.10611999D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta=-3.62D-08 NORM(A)= 0.10611999D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta= 1.32D-09 NORM(A)= 0.10611999D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887566 Delta=-2.17D-09 NORM(A)= 0.10611999D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887566 Delta=-6.59D-12 NORM(A)= 0.10611999D+01 Wavefunction amplitudes converged. E(Corr)= -109.35887566 Largest amplitude= 9.11D-02 Time for triples= 13.45 seconds. T4(CCSD)= -0.19414902D-01 T5(CCSD)= 0.86946017D-03 CCSD(T)= -0.10937742111D+03 Discarding MO integrals. ********************************************************************** Population analysis using the SCF Density. ********************************************************************** Orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (SGG) (SGU) (DLTG) (DLTG) (PHIU) (PHIU) (PIU) (PIU) (PHIG) (PHIG) (SGG) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (DLTU) (DLTU) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) The electronic state is 1-SGG. Alpha occ. eigenvalues -- -15.68546 -15.68203 -1.46760 -0.78022 -0.63367 Alpha occ. eigenvalues -- -0.61179 -0.61179 Alpha virt. eigenvalues -- 0.15136 0.15136 0.36329 0.37874 0.42979 Alpha virt. eigenvalues -- 0.42979 0.45037 0.59596 0.59596 0.62049 Alpha virt. eigenvalues -- 1.03311 1.04713 1.04713 1.32737 1.32737 Alpha virt. eigenvalues -- 1.50951 1.50951 1.54274 1.92807 1.92807 Alpha virt. eigenvalues -- 2.01079 2.15134 2.30453 2.30453 2.33492 Alpha virt. eigenvalues -- 2.59139 2.59139 2.89525 3.17513 3.82524 Alpha virt. eigenvalues -- 3.82524 3.95902 3.95902 3.98623 3.98623 Alpha virt. eigenvalues -- 4.44158 4.44158 4.53686 4.76937 4.76937 Alpha virt. eigenvalues -- 4.90457 4.90457 4.92708 4.92708 5.29634 Alpha virt. eigenvalues -- 5.29634 5.35144 5.40868 5.40868 6.60669 Alpha virt. eigenvalues -- 6.66089 6.66089 6.99763 32.51530 33.29372 Condensed to atoms (all electrons): 1 2 1 N 6.261719 0.738281 2 N 0.738281 6.261719 Mulliken charges: 1 1 N 0.000000 2 N 0.000000 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N 0.000000 2 N 0.000000 Electronic spatial extent (au): = 39.3114 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.3651 YY= -10.3651 ZZ= -11.6956 XY= 0.0000 XZ= 0.0000 YZ= -0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.4435 YY= 0.4435 ZZ= -0.8870 XY= 0.0000 XZ= 0.0000 YZ= -0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0000 YYY= -0.0000 ZZZ= -0.0000 XYY= -0.0000 XXY= -0.0000 XXZ= 0.0000 XZZ= -0.0000 YZZ= -0.0000 YYZ= 0.0000 XYZ= -0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -8.9594 YYYY= -8.9594 ZZZZ= -31.7242 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= -0.0000 ZZZX= 0.0000 ZZZY= -0.0000 XXYY= -2.9865 XXZZ= -6.3224 YYZZ= -6.3224 XXYZ= -0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.351033333729D+01 E-N=-3.027703020133D+02 KE= 1.087207603927D+02 Symmetry AG KE= 5.335645608882D+01 Symmetry B1G KE= 4.588759015054D-34 Symmetry B2G KE= 1.636335650384D-19 Symmetry B3G KE= 2.324703439096D-19 Symmetry AU KE= 3.316536690577D-33 Symmetry B1U KE= 4.888861385817D+01 Symmetry B2U KE= 3.237845222870D+00 Symmetry B3U KE= 3.237845222870D+00 EnFreq: symmetry will be used. Leave EnFreq: IXYZ= 0 JXYZ= 1 IStep= 1. Standard basis: def2TZVPP (5D, 7F) 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.5093670080 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned off. One-electron integrals computed using PRISM. 1 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.21D-04 NBF= 62 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 62 Initial guess from the checkpoint file: "NN.chk" B after Tr= 0.009449 0.000000 0.000000 Rot= 0.999990 0.000000 -0.004533 0.000000 Ang= -0.52 deg. Keep R1 ints in memory in canonical form, NReq=5811726. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.986981091 A.U. after 8 cycles NFock= 8 Conv=0.19D-11 -V/T= 2.0025 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.27640633D+02 Semi-Direct transformation. ModeAB= 2 MOrb= 5 LenV= 1610327063 LASXX= 501655 LTotXX= 501655 LenRXX= 501655 LTotAB= 526575 MaxLAS= 788400 LenRXY= 788400 NonZer= 1003310 LenScr= 2256384 LnRSAI= 0 LnScr1= 0 LExtra= 0 Total= 3546439 MaxDsk= -1 SrtSym= F ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1593082744D-01 E2= -0.4794472761D-01 alpha-beta T2 = 0.8830653991D-01 E2= -0.2778436379D+00 beta-beta T2 = 0.1593082744D-01 E2= -0.4794472761D-01 ANorm= 0.1058379986D+01 E2 = -0.3737330931D+00 EUMP2 = -0.10936071418376D+03 Keep R2 and R3 ints in memory in canonical form, NReq=7722643. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.96087388D-02 E3= 0.81309382D-02 EUMP3= -0.10935258325D+03 E4(DQ)= -0.29104605D-02 UMP4(DQ)= -0.10935549371D+03 E4(SDQ)= -0.85925900D-02 UMP4(SDQ)= -0.10936117584D+03 DE(Corr)= -0.35574580 E(Corr)= -109.34272689 NORM(A)= 0.10536707D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37086164 E(CORR)= -109.35784273 Delta=-1.51D-02 NORM(A)= 0.10595006D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37069310 E(CORR)= -109.35767419 Delta= 1.69D-04 NORM(A)= 0.10608053D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37178294 E(CORR)= -109.35876403 Delta=-1.09D-03 NORM(A)= 0.10611709D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188306 E(CORR)= -109.35886415 Delta=-1.00D-04 NORM(A)= 0.10612087D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189245 E(CORR)= -109.35887354 Delta=-9.39D-06 NORM(A)= 0.10612020D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189322 E(CORR)= -109.35887431 Delta=-7.65D-07 NORM(A)= 0.10612047D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189242 E(CORR)= -109.35887351 Delta= 7.96D-07 NORM(A)= 0.10612040D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189291 E(CORR)= -109.35887400 Delta=-4.86D-07 NORM(A)= 0.10612042D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189279 E(CORR)= -109.35887388 Delta= 1.13D-07 NORM(A)= 0.10612042D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189283 E(CORR)= -109.35887392 Delta=-3.62D-08 NORM(A)= 0.10612042D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189283 E(CORR)= -109.35887392 Delta= 1.28D-09 NORM(A)= 0.10612042D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189283 E(CORR)= -109.35887392 Delta=-2.18D-09 NORM(A)= 0.10612042D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189283 E(CORR)= -109.35887392 Delta=-2.92D-10 NORM(A)= 0.10612042D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189283 E(CORR)= -109.35887392 Delta=-9.56D-11 NORM(A)= 0.10612042D+01 Wavefunction amplitudes converged. E(Corr)= -109.35887392 Largest amplitude= 8.92D-02 T4(AAA)= -0.40665250D-03 T4(AAB)= -0.93017720D-02 T5(AAA)= 0.25003672D-04 T5(AAB)= 0.40983116D-03 Time for triples= 3.06 seconds. T4(CCSD)= -0.19416849D-01 T5(CCSD)= 0.86966966D-03 CCSD(T)= -0.10937742110D+03 Discarding MO integrals. ********************************************************************** Population analysis using the SCF Density. ********************************************************************** Alpha occ. eigenvalues -- -15.68547 -15.68205 -1.46757 -0.78023 -0.63367 Alpha occ. eigenvalues -- -0.61177 -0.61177 Alpha virt. eigenvalues -- 0.15134 0.15134 0.36329 0.37873 0.42980 Alpha virt. eigenvalues -- 0.42980 0.45038 0.59595 0.59595 0.62049 Alpha virt. eigenvalues -- 1.03303 1.04714 1.04714 1.32734 1.32734 Alpha virt. eigenvalues -- 1.50949 1.50949 1.54275 1.92805 1.92805 Alpha virt. eigenvalues -- 2.01078 2.15133 2.30453 2.30453 2.33487 Alpha virt. eigenvalues -- 2.59139 2.59139 2.89521 3.17523 3.82522 Alpha virt. eigenvalues -- 3.82522 3.95904 3.95904 3.98619 3.98619 Alpha virt. eigenvalues -- 4.44155 4.44155 4.53680 4.76936 4.76936 Alpha virt. eigenvalues -- 4.90456 4.90456 4.92710 4.92710 5.29624 Alpha virt. eigenvalues -- 5.29624 5.35131 5.40862 5.40862 6.60651 Alpha virt. eigenvalues -- 6.66075 6.66075 6.99764 32.51534 33.29350 Condensed to atoms (all electrons): 1 2 1 N 6.261756 0.738244 2 N 0.738244 6.261756 Mulliken charges: 1 1 N -0.000000 2 N 0.000000 Sum of Mulliken charges = -0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N -0.000000 2 N 0.000000 Electronic spatial extent (au): = 39.3141 Charge= -0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.3654 YY= -10.3653 ZZ= -11.6956 XY= -0.0000 XZ= -0.0121 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.4433 YY= 0.4434 ZZ= -0.8868 XY= -0.0000 XZ= -0.0121 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.1555 YYY= 0.0000 ZZZ= 0.0000 XYY= -0.0518 XXY= 0.0000 XXZ= -0.0001 XZZ= -0.0585 YZZ= 0.0000 YYZ= -0.0000 XYZ= -0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -8.9630 YYYY= -8.9598 ZZZZ= -31.7238 XXXY= 0.0000 XXXZ= -0.0907 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= -0.1157 ZZZY= 0.0000 XXYY= -2.9871 XXZZ= -6.3233 YYZZ= -6.3225 XXYZ= 0.0000 YYXZ= -0.0302 ZZXY= -0.0000 N-N= 2.350936700796D+01 E-N=-3.027681095635D+02 KE= 1.087204668372D+02 Skip step-back as it is equivalent to step-up. Leave EnFreq: IXYZ= 0 JXYZ= 2 IStep= 1. Standard basis: def2TZVPP (5D, 7F) 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.5093670080 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned off. One-electron integrals computed using PRISM. 1 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.21D-04 NBF= 62 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 62 Initial guess from the checkpoint file: "NN.chk" B after Tr= 0.000000 0.009449 0.000000 Rot= 0.999990 0.004533 -0.000000 0.000000 Ang= 0.52 deg. Keep R1 ints in memory in canonical form, NReq=5811726. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.986981091 A.U. after 8 cycles NFock= 8 Conv=0.19D-11 -V/T= 2.0025 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.27640633D+02 Semi-Direct transformation. ModeAB= 2 MOrb= 5 LenV= 1610327063 LASXX= 501655 LTotXX= 501655 LenRXX= 501655 LTotAB= 526575 MaxLAS= 788400 LenRXY= 788400 NonZer= 1003310 LenScr= 2256384 LnRSAI= 0 LnScr1= 0 LExtra= 0 Total= 3546439 MaxDsk= -1 SrtSym= F ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1593082744D-01 E2= -0.4794472761D-01 alpha-beta T2 = 0.8830653991D-01 E2= -0.2778436379D+00 beta-beta T2 = 0.1593082744D-01 E2= -0.4794472761D-01 ANorm= 0.1058379986D+01 E2 = -0.3737330931D+00 EUMP2 = -0.10936071418376D+03 Keep R2 and R3 ints in memory in canonical form, NReq=7722643. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.96087388D-02 E3= 0.81309382D-02 EUMP3= -0.10935258325D+03 E4(DQ)= -0.29104605D-02 UMP4(DQ)= -0.10935549371D+03 E4(SDQ)= -0.85925900D-02 UMP4(SDQ)= -0.10936117584D+03 DE(Corr)= -0.35574580 E(Corr)= -109.34272689 NORM(A)= 0.10536707D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37086164 E(CORR)= -109.35784273 Delta=-1.51D-02 NORM(A)= 0.10595006D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37069310 E(CORR)= -109.35767419 Delta= 1.69D-04 NORM(A)= 0.10608053D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37178294 E(CORR)= -109.35876403 Delta=-1.09D-03 NORM(A)= 0.10611709D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188306 E(CORR)= -109.35886415 Delta=-1.00D-04 NORM(A)= 0.10612087D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189245 E(CORR)= -109.35887354 Delta=-9.39D-06 NORM(A)= 0.10612020D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189322 E(CORR)= -109.35887431 Delta=-7.65D-07 NORM(A)= 0.10612047D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189242 E(CORR)= -109.35887351 Delta= 7.96D-07 NORM(A)= 0.10612040D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189291 E(CORR)= -109.35887400 Delta=-4.86D-07 NORM(A)= 0.10612042D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189279 E(CORR)= -109.35887388 Delta= 1.13D-07 NORM(A)= 0.10612042D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189283 E(CORR)= -109.35887392 Delta=-3.62D-08 NORM(A)= 0.10612042D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189283 E(CORR)= -109.35887392 Delta= 1.30D-09 NORM(A)= 0.10612042D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189283 E(CORR)= -109.35887392 Delta=-1.74D-09 NORM(A)= 0.10612042D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189283 E(CORR)= -109.35887392 Delta=-6.72D-10 NORM(A)= 0.10612042D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189283 E(CORR)= -109.35887392 Delta=-1.10D-10 NORM(A)= 0.10612042D+01 Iteration Nr. 16 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189283 E(CORR)= -109.35887392 Delta=-1.14D-10 NORM(A)= 0.10612042D+01 Iteration Nr. 17 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37189283 E(CORR)= -109.35887392 Delta=-2.04D-11 NORM(A)= 0.10612042D+01 Wavefunction amplitudes converged. E(Corr)= -109.35887392 Largest amplitude= 8.15D-02 T4(AAA)= -0.40665250D-03 T4(AAB)= -0.93017720D-02 T5(AAA)= 0.25003672D-04 T5(AAB)= 0.40983116D-03 Time for triples= 3.06 seconds. T4(CCSD)= -0.19416849D-01 T5(CCSD)= 0.86966966D-03 CCSD(T)= -0.10937742110D+03 Discarding MO integrals. ********************************************************************** Population analysis using the SCF Density. ********************************************************************** Alpha occ. eigenvalues -- -15.68547 -15.68205 -1.46757 -0.78023 -0.63367 Alpha occ. eigenvalues -- -0.61177 -0.61177 Alpha virt. eigenvalues -- 0.15134 0.15134 0.36329 0.37873 0.42980 Alpha virt. eigenvalues -- 0.42980 0.45038 0.59595 0.59595 0.62049 Alpha virt. eigenvalues -- 1.03303 1.04714 1.04714 1.32734 1.32734 Alpha virt. eigenvalues -- 1.50949 1.50949 1.54275 1.92805 1.92805 Alpha virt. eigenvalues -- 2.01078 2.15133 2.30453 2.30453 2.33487 Alpha virt. eigenvalues -- 2.59139 2.59139 2.89521 3.17523 3.82522 Alpha virt. eigenvalues -- 3.82522 3.95904 3.95904 3.98619 3.98619 Alpha virt. eigenvalues -- 4.44155 4.44155 4.53680 4.76936 4.76936 Alpha virt. eigenvalues -- 4.90456 4.90456 4.92710 4.92710 5.29624 Alpha virt. eigenvalues -- 5.29624 5.35131 5.40862 5.40862 6.60651 Alpha virt. eigenvalues -- 6.66075 6.66075 6.99764 32.51534 33.29350 Condensed to atoms (all electrons): 1 2 1 N 6.261756 0.738244 2 N 0.738244 6.261756 Mulliken charges: 1 1 N -0.000000 2 N 0.000000 Sum of Mulliken charges = -0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N -0.000000 2 N 0.000000 Electronic spatial extent (au): = 39.3141 Charge= -0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.3653 YY= -10.3654 ZZ= -11.6956 XY= 0.0000 XZ= -0.0000 YZ= -0.0121 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.4434 YY= 0.4433 ZZ= -0.8868 XY= 0.0000 XZ= -0.0000 YZ= -0.0121 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0000 YYY= -0.1555 ZZZ= 0.0000 XYY= -0.0000 XXY= -0.0518 XXZ= -0.0000 XZZ= -0.0000 YZZ= -0.0585 YYZ= -0.0001 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -8.9598 YYYY= -8.9630 ZZZZ= -31.7238 XXXY= 0.0000 XXXZ= -0.0000 YYYX= 0.0000 YYYZ= -0.0907 ZZZX= 0.0000 ZZZY= -0.1157 XXYY= -2.9871 XXZZ= -6.3225 YYZZ= -6.3233 XXYZ= -0.0302 YYXZ= -0.0000 ZZXY= 0.0000 N-N= 2.350936700796D+01 E-N=-3.027681095635D+02 KE= 1.087204668372D+02 Skip step-back as it is equivalent to step-up. Leave EnFreq: IXYZ= 0 JXYZ= 3 IStep= 1. Standard basis: def2TZVPP (5D, 7F) 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.2990815581 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned off. One-electron integrals computed using PRISM. 1 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 814. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.39D-04 NBF= 62 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 62 Initial guess from the checkpoint file: "NN.chk" B after Tr= 0.000000 0.000000 0.009449 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Keep R1 ints in memory in canonical form, NReq=5811688. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.984417265 A.U. after 11 cycles NFock= 11 Conv=0.32D-12 -V/T= 2.0030 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.26439968D+02 Semi-Direct transformation. ModeAB= 2 MOrb= 5 LenV= 1610327091 LASXX= 501655 LTotXX= 501655 LenRXX= 501655 LTotAB= 526575 MaxLAS= 788400 LenRXY= 788400 NonZer= 1003310 LenScr= 2256384 LnRSAI= 0 LnScr1= 0 LExtra= 0 Total= 3546439 MaxDsk= -1 SrtSym= F ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1628309397D-01 E2= -0.4836812210D-01 alpha-beta T2 = 0.9001166406D-01 E2= -0.2797875166D+00 beta-beta T2 = 0.1628309397D-01 E2= -0.4836812210D-01 ANorm= 0.1059517745D+01 E2 = -0.3765237608D+00 EUMP2 = -0.10936094102570D+03 Keep R2 and R3 ints in memory in canonical form, NReq=7722643. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.97727722D-02 E3= 0.94397794D-02 EUMP3= -0.10935150125D+03 E4(DQ)= -0.32867843D-02 UMP4(DQ)= -0.10935478803D+03 E4(SDQ)= -0.92295759D-02 UMP4(SDQ)= -0.10936073082D+03 DE(Corr)= -0.35704780 E(Corr)= -109.34146507 NORM(A)= 0.10543089D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37282063 E(CORR)= -109.35723790 Delta=-1.58D-02 NORM(A)= 0.10603537D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37255971 E(CORR)= -109.35697698 Delta= 2.61D-04 NORM(A)= 0.10617238D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37369939 E(CORR)= -109.35811666 Delta=-1.14D-03 NORM(A)= 0.10621168D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37380597 E(CORR)= -109.35822323 Delta=-1.07D-04 NORM(A)= 0.10621581D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37381610 E(CORR)= -109.35823337 Delta=-1.01D-05 NORM(A)= 0.10621510D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37381699 E(CORR)= -109.35823426 Delta=-8.88D-07 NORM(A)= 0.10621539D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37381609 E(CORR)= -109.35823336 Delta= 8.98D-07 NORM(A)= 0.10621531D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37381663 E(CORR)= -109.35823390 Delta=-5.42D-07 NORM(A)= 0.10621534D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37381651 E(CORR)= -109.35823377 Delta= 1.29D-07 NORM(A)= 0.10621533D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37381655 E(CORR)= -109.35823381 Delta=-4.10D-08 NORM(A)= 0.10621534D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37381654 E(CORR)= -109.35823381 Delta= 1.74D-09 NORM(A)= 0.10621534D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37381655 E(CORR)= -109.35823381 Delta=-1.83D-09 NORM(A)= 0.10621534D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37381655 E(CORR)= -109.35823381 Delta=-7.77D-10 NORM(A)= 0.10621534D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37381655 E(CORR)= -109.35823381 Delta=-8.93D-11 NORM(A)= 0.10621534D+01 Wavefunction amplitudes converged. E(Corr)= -109.35823381 Largest amplitude= 8.58D-02 T4(AAA)= -0.41328820D-03 T4(AAB)= -0.95113340D-02 T5(AAA)= 0.26315082D-04 T5(AAB)= 0.43203145D-03 Time for triples= 3.01 seconds. T4(CCSD)= -0.19849244D-01 T5(CCSD)= 0.91669307D-03 CCSD(T)= -0.10937716636D+03 Discarding MO integrals. ********************************************************************** Population analysis using the SCF Density. ********************************************************************** Alpha occ. eigenvalues -- -15.68900 -15.68577 -1.46035 -0.78347 -0.63275 Alpha occ. eigenvalues -- -0.60760 -0.60760 Alpha virt. eigenvalues -- 0.14668 0.14668 0.36254 0.37741 0.43096 Alpha virt. eigenvalues -- 0.43096 0.45102 0.59370 0.59370 0.61954 Alpha virt. eigenvalues -- 1.01446 1.04768 1.04768 1.32120 1.32120 Alpha virt. eigenvalues -- 1.50565 1.50565 1.54603 1.92386 1.92386 Alpha virt. eigenvalues -- 2.00804 2.14980 2.30443 2.30443 2.32459 Alpha virt. eigenvalues -- 2.59116 2.59116 2.88556 3.19654 3.82192 Alpha virt. eigenvalues -- 3.82192 3.96400 3.96400 3.97709 3.97709 Alpha virt. eigenvalues -- 4.43356 4.43356 4.52469 4.76741 4.76741 Alpha virt. eigenvalues -- 4.90169 4.90169 4.93346 4.93346 5.27462 Alpha virt. eigenvalues -- 5.27462 5.32475 5.39428 5.39428 6.56819 Alpha virt. eigenvalues -- 6.62863 6.62863 7.00210 32.52407 33.24608 Condensed to atoms (all electrons): 1 2 1 N 6.269744 0.730256 2 N 0.730256 6.269744 Mulliken charges: 1 1 N 0.000000 2 N -0.000000 Sum of Mulliken charges = -0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N 0.000000 2 N -0.000000 Electronic spatial extent (au): = 39.6471 Charge= -0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.4022 YY= -10.4022 ZZ= -11.6989 XY= -0.0000 XZ= -0.0000 YZ= -0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.4322 YY= 0.4322 ZZ= -0.8645 XY= -0.0000 XZ= -0.0000 YZ= -0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -0.1755 XYY= -0.0000 XXY= 0.0000 XXZ= -0.0520 XZZ= 0.0000 YZZ= -0.0000 YYZ= -0.0520 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.0266 YYYY= -9.0266 ZZZZ= -32.1031 XXXY= -0.0000 XXXZ= -0.0000 YYYX= -0.0000 YYYZ= -0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.0089 XXZZ= -6.3944 YYZZ= -6.3944 XXYZ= -0.0000 YYXZ= -0.0000 ZZXY= -0.0000 N-N= 2.329908155809D+01 E-N=-3.022911348076D+02 KE= 1.086572460427D+02 Leave EnFreq: IXYZ= 0 JXYZ= 3 IStep= 2. Standard basis: def2TZVPP (5D, 7F) 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.7254509900 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned off. One-electron integrals computed using PRISM. 1 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.04D-04 NBF= 62 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 62 Initial guess from the checkpoint file: "NN.chk" B after Tr= 0.000000 0.000000 -0.009449 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Keep R1 ints in memory in canonical form, NReq=5811726. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.989016212 A.U. after 11 cycles NFock= 11 Conv=0.53D-12 -V/T= 2.0019 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.28871618D+02 Semi-Direct transformation. ModeAB= 2 MOrb= 5 LenV= 1610327063 LASXX= 501655 LTotXX= 501655 LenRXX= 501655 LTotAB= 526575 MaxLAS= 788400 LenRXY= 788400 NonZer= 1003310 LenScr= 2256384 LnRSAI= 0 LnScr1= 0 LExtra= 0 Total= 3546439 MaxDsk= -1 SrtSym= F ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1558612704D-01 E2= -0.4752738083D-01 alpha-beta T2 = 0.8663229226D-01 E2= -0.2759171927D+00 beta-beta T2 = 0.1558612704D-01 E2= -0.4752738083D-01 ANorm= 0.1057262761D+01 E2 = -0.3709719544D+00 EUMP2 = -0.10935998816598D+03 Keep R2 and R3 ints in memory in canonical form, NReq=7722643. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.94459050D-02 E3= 0.68697655D-02 EUMP3= -0.10935311840D+03 E4(DQ)= -0.25592520D-02 UMP4(DQ)= -0.10935567765D+03 E4(SDQ)= -0.79887580D-02 UMP4(SDQ)= -0.10936110716D+03 DE(Corr)= -0.35442380 E(Corr)= -109.34344001 NORM(A)= 0.10530319D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36890899 E(CORR)= -109.35792520 Delta=-1.45D-02 NORM(A)= 0.10586525D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36882707 E(CORR)= -109.35784329 Delta= 8.19D-05 NORM(A)= 0.10598940D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36986859 E(CORR)= -109.35888480 Delta=-1.04D-03 NORM(A)= 0.10602338D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36996256 E(CORR)= -109.35897877 Delta=-9.40D-05 NORM(A)= 0.10602685D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36997125 E(CORR)= -109.35898747 Delta=-8.70D-06 NORM(A)= 0.10602622D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36997191 E(CORR)= -109.35898812 Delta=-6.56D-07 NORM(A)= 0.10602646D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36997121 E(CORR)= -109.35898742 Delta= 7.04D-07 NORM(A)= 0.10602640D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36997164 E(CORR)= -109.35898785 Delta=-4.36D-07 NORM(A)= 0.10602642D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36997154 E(CORR)= -109.35898775 Delta= 9.91D-08 NORM(A)= 0.10602642D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36997157 E(CORR)= -109.35898779 Delta=-3.21D-08 NORM(A)= 0.10602642D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36997157 E(CORR)= -109.35898779 Delta= 9.87D-10 NORM(A)= 0.10602642D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36997158 E(CORR)= -109.35898779 Delta=-1.75D-09 NORM(A)= 0.10602642D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36997158 E(CORR)= -109.35898779 Delta=-5.87D-10 NORM(A)= 0.10602642D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36997158 E(CORR)= -109.35898779 Delta=-1.34D-10 NORM(A)= 0.10602642D+01 Iteration Nr. 16 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.36997158 E(CORR)= -109.35898779 Delta=-3.32D-11 NORM(A)= 0.10602642D+01 Wavefunction amplitudes converged. E(Corr)= -109.35898779 Largest amplitude= 8.85D-02 T4(AAA)= -0.40003334D-03 T4(AAB)= -0.90951203D-02 T5(AAA)= 0.23735049D-04 T5(AAB)= 0.38839884D-03 Time for triples= 3.06 seconds. T4(CCSD)= -0.18990307D-01 T5(CCSD)= 0.82426777D-03 CCSD(T)= -0.10937715383D+03 Discarding MO integrals. ********************************************************************** Population analysis using the SCF Density. ********************************************************************** Alpha occ. eigenvalues -- -15.68187 -15.67824 -1.47488 -0.77695 -0.63458 Alpha occ. eigenvalues -- -0.61604 -0.61604 Alpha virt. eigenvalues -- 0.15607 0.15607 0.36405 0.38001 0.42862 Alpha virt. eigenvalues -- 0.42862 0.44974 0.59830 0.59830 0.62134 Alpha virt. eigenvalues -- 1.04662 1.04662 1.05200 1.33357 1.33357 Alpha virt. eigenvalues -- 1.51338 1.51338 1.53943 1.93231 1.93231 Alpha virt. eigenvalues -- 2.01223 2.15286 2.30452 2.30452 2.34661 Alpha virt. eigenvalues -- 2.59125 2.59125 2.90475 3.15435 3.82878 Alpha virt. eigenvalues -- 3.82878 3.95404 3.95404 3.99570 3.99570 Alpha virt. eigenvalues -- 4.44975 4.44975 4.54852 4.77141 4.77141 Alpha virt. eigenvalues -- 4.90711 4.90711 4.92073 4.92073 5.31862 Alpha virt. eigenvalues -- 5.31862 5.37855 5.42315 5.42315 6.64572 Alpha virt. eigenvalues -- 6.69302 6.69302 6.99407 32.50584 33.34256 Condensed to atoms (all electrons): 1 2 1 N 6.253424 0.746576 2 N 0.746576 6.253424 Mulliken charges: 1 1 N 0.000000 2 N -0.000000 Sum of Mulliken charges = -0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N 0.000000 2 N -0.000000 Electronic spatial extent (au): = 38.9798 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= -0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.3278 YY= -10.3278 ZZ= -11.6919 XY= -0.0000 XZ= 0.0000 YZ= -0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.4547 YY= 0.4547 ZZ= -0.9094 XY= -0.0000 XZ= 0.0000 YZ= -0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.1754 XYY= -0.0000 XXY= -0.0000 XXZ= 0.0516 XZZ= -0.0000 YZZ= -0.0000 YYZ= 0.0516 XYZ= -0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -8.8921 YYYY= -8.8921 ZZZZ= -31.3519 XXXY= -0.0000 XXXZ= -0.0000 YYYX= -0.0000 YYYZ= -0.0000 ZZZX= 0.0000 ZZZY= -0.0000 XXYY= -2.9640 XXZZ= -6.2516 YYZZ= -6.2516 XXYZ= -0.0000 YYXZ= -0.0000 ZZXY= -0.0000 N-N= 2.372545098996D+01 E-N=-3.032584934256D+02 KE= 1.087867949978D+02 Leave EnFreq: IXYZ= 4 JXYZ= 1 IStep= 1. Standard basis: def2TZVPP (5D, 7F) 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.5103333373 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned off. One-electron integrals computed using PRISM. 1 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.21D-04 NBF= 62 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 62 Initial guess from the checkpoint file: "NN.chk" B after Tr= 0.018897 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Keep R1 ints in memory in canonical form, NReq=5811726. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.986991550 A.U. after 1 cycles NFock= 1 Conv=0.30D-12 -V/T= 2.0024 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.27646148D+02 Semi-Direct transformation. ModeAB= 2 MOrb= 5 LenV= 1610327063 LASXX= 501655 LTotXX= 501655 LenRXX= 501655 LTotAB= 526575 MaxLAS= 788400 LenRXY= 788400 NonZer= 1003310 LenScr= 2256384 LnRSAI= 0 LnScr1= 0 LExtra= 0 Total= 3546439 MaxDsk= -1 SrtSym= F ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1592924777D-01 E2= -0.4794282191D-01 alpha-beta T2 = 0.8829888041D-01 E2= -0.2778348651D+00 beta-beta T2 = 0.1592924777D-01 E2= -0.4794282191D-01 ANorm= 0.1058374875D+01 E2 = -0.3737205089D+00 EUMP2 = -0.10936071205874D+03 Keep R2 and R3 ints in memory in canonical form, NReq=7722643. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.96079978D-02 E3= 0.81251138D-02 EUMP3= -0.10935258694D+03 E4(DQ)= -0.29088126D-02 UMP4(DQ)= -0.10935549576D+03 E4(SDQ)= -0.85897788D-02 UMP4(SDQ)= -0.10936117672D+03 DE(Corr)= -0.35573985 E(Corr)= -109.34273140 NORM(A)= 0.10536678D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37085278 E(CORR)= -109.35784433 Delta=-1.51D-02 NORM(A)= 0.10594968D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37068464 E(CORR)= -109.35767619 Delta= 1.68D-04 NORM(A)= 0.10608011D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37177425 E(CORR)= -109.35876580 Delta=-1.09D-03 NORM(A)= 0.10611666D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37187435 E(CORR)= -109.35886589 Delta=-1.00D-04 NORM(A)= 0.10612044D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188374 E(CORR)= -109.35887529 Delta=-9.39D-06 NORM(A)= 0.10611977D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188450 E(CORR)= -109.35887605 Delta=-7.65D-07 NORM(A)= 0.10612004D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188371 E(CORR)= -109.35887526 Delta= 7.95D-07 NORM(A)= 0.10611997D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188419 E(CORR)= -109.35887574 Delta=-4.86D-07 NORM(A)= 0.10611999D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188408 E(CORR)= -109.35887563 Delta= 1.13D-07 NORM(A)= 0.10611999D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta=-3.62D-08 NORM(A)= 0.10611999D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta= 1.27D-09 NORM(A)= 0.10611999D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta=-1.94D-09 NORM(A)= 0.10611999D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887567 Delta=-4.82D-10 NORM(A)= 0.10611999D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887567 Delta=-1.57D-11 NORM(A)= 0.10611999D+01 Wavefunction amplitudes converged. E(Corr)= -109.35887567 Largest amplitude= 8.74D-02 T4(AAA)= -0.40662245D-03 T4(AAB)= -0.93008286D-02 T5(AAA)= 0.24997824D-04 T5(AAB)= 0.40973227D-03 Time for triples= 2.91 seconds. T4(CCSD)= -0.19414902D-01 T5(CCSD)= 0.86946019D-03 CCSD(T)= -0.10937742111D+03 Discarding MO integrals. ********************************************************************** Population analysis using the SCF Density. ********************************************************************** Alpha occ. eigenvalues -- -15.68546 -15.68203 -1.46760 -0.78022 -0.63367 Alpha occ. eigenvalues -- -0.61179 -0.61179 Alpha virt. eigenvalues -- 0.15136 0.15136 0.36329 0.37874 0.42979 Alpha virt. eigenvalues -- 0.42979 0.45037 0.59596 0.59596 0.62049 Alpha virt. eigenvalues -- 1.03311 1.04713 1.04713 1.32737 1.32737 Alpha virt. eigenvalues -- 1.50951 1.50951 1.54274 1.92807 1.92807 Alpha virt. eigenvalues -- 2.01079 2.15134 2.30453 2.30453 2.33492 Alpha virt. eigenvalues -- 2.59139 2.59139 2.89525 3.17513 3.82524 Alpha virt. eigenvalues -- 3.82524 3.95902 3.95902 3.98623 3.98623 Alpha virt. eigenvalues -- 4.44158 4.44158 4.53686 4.76937 4.76937 Alpha virt. eigenvalues -- 4.90457 4.90457 4.92708 4.92708 5.29634 Alpha virt. eigenvalues -- 5.29634 5.35144 5.40868 5.40868 6.60669 Alpha virt. eigenvalues -- 6.66089 6.66089 6.99763 32.51530 33.29372 Condensed to atoms (all electrons): 1 2 1 N 6.261719 0.738281 2 N 0.738281 6.261719 Mulliken charges: 1 1 N -0.000000 2 N 0.000000 Sum of Mulliken charges = -0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N -0.000000 2 N 0.000000 Electronic spatial extent (au): = 39.3164 Charge= -0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.0000 Y= -0.0000 Z= -0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.3651 YY= -10.3651 ZZ= -11.6956 XY= -0.0000 XZ= 0.0000 YZ= -0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.4435 YY= 0.4435 ZZ= -0.8870 XY= -0.0000 XZ= 0.0000 YZ= -0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.3110 YYY= -0.0000 ZZZ= 0.0000 XYY= -0.1037 XXY= 0.0000 XXZ= -0.0000 XZZ= -0.1170 YZZ= -0.0000 YYZ= -0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -8.9657 YYYY= -8.9594 ZZZZ= -31.7242 XXXY= -0.0000 XXXZ= -0.0000 YYYX= -0.0000 YYYZ= -0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -2.9875 XXZZ= -6.3236 YYZZ= -6.3224 XXYZ= -0.0000 YYXZ= -0.0000 ZZXY= -0.0000 N-N= 2.351033333729D+01 E-N=-3.027703020133D+02 KE= 1.087207603927D+02 Skip step-back as it is equivalent to step-up. Leave EnFreq: IXYZ= 5 JXYZ= 2 IStep= 1. Standard basis: def2TZVPP (5D, 7F) 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.5103333373 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned off. One-electron integrals computed using PRISM. 1 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.21D-04 NBF= 62 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 62 Initial guess from the checkpoint file: "NN.chk" B after Tr= 0.000000 0.018897 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Keep R1 ints in memory in canonical form, NReq=5811726. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.986991550 A.U. after 1 cycles NFock= 1 Conv=0.28D-12 -V/T= 2.0024 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.27646148D+02 Semi-Direct transformation. ModeAB= 2 MOrb= 5 LenV= 1610327063 LASXX= 501655 LTotXX= 501655 LenRXX= 501655 LTotAB= 526575 MaxLAS= 788400 LenRXY= 788400 NonZer= 1003310 LenScr= 2256384 LnRSAI= 0 LnScr1= 0 LExtra= 0 Total= 3546439 MaxDsk= -1 SrtSym= F ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1592924777D-01 E2= -0.4794282191D-01 alpha-beta T2 = 0.8829888041D-01 E2= -0.2778348651D+00 beta-beta T2 = 0.1592924777D-01 E2= -0.4794282191D-01 ANorm= 0.1058374875D+01 E2 = -0.3737205089D+00 EUMP2 = -0.10936071205874D+03 Keep R2 and R3 ints in memory in canonical form, NReq=7722643. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.96079978D-02 E3= 0.81251138D-02 EUMP3= -0.10935258694D+03 E4(DQ)= -0.29088126D-02 UMP4(DQ)= -0.10935549576D+03 E4(SDQ)= -0.85897788D-02 UMP4(SDQ)= -0.10936117672D+03 DE(Corr)= -0.35573985 E(Corr)= -109.34273140 NORM(A)= 0.10536678D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37085278 E(CORR)= -109.35784433 Delta=-1.51D-02 NORM(A)= 0.10594968D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37068464 E(CORR)= -109.35767619 Delta= 1.68D-04 NORM(A)= 0.10608011D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37177425 E(CORR)= -109.35876580 Delta=-1.09D-03 NORM(A)= 0.10611666D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37187435 E(CORR)= -109.35886589 Delta=-1.00D-04 NORM(A)= 0.10612044D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188374 E(CORR)= -109.35887529 Delta=-9.39D-06 NORM(A)= 0.10611977D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188450 E(CORR)= -109.35887605 Delta=-7.65D-07 NORM(A)= 0.10612004D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188371 E(CORR)= -109.35887526 Delta= 7.95D-07 NORM(A)= 0.10611997D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188419 E(CORR)= -109.35887574 Delta=-4.86D-07 NORM(A)= 0.10611999D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188408 E(CORR)= -109.35887563 Delta= 1.13D-07 NORM(A)= 0.10611999D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta=-3.62D-08 NORM(A)= 0.10611999D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta= 1.30D-09 NORM(A)= 0.10611999D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta=-1.87D-09 NORM(A)= 0.10611999D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887567 Delta=-5.44D-10 NORM(A)= 0.10611999D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887567 Delta=-1.44D-10 NORM(A)= 0.10611999D+01 Iteration Nr. 16 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887567 Delta=-6.00D-11 NORM(A)= 0.10611999D+01 Wavefunction amplitudes converged. E(Corr)= -109.35887567 Largest amplitude= 7.71D-02 T4(AAA)= -0.40662245D-03 T4(AAB)= -0.93008286D-02 T5(AAA)= 0.24997824D-04 T5(AAB)= 0.40973227D-03 Time for triples= 3.10 seconds. T4(CCSD)= -0.19414902D-01 T5(CCSD)= 0.86946018D-03 CCSD(T)= -0.10937742111D+03 Discarding MO integrals. ********************************************************************** Population analysis using the SCF Density. ********************************************************************** Alpha occ. eigenvalues -- -15.68546 -15.68203 -1.46760 -0.78022 -0.63367 Alpha occ. eigenvalues -- -0.61179 -0.61179 Alpha virt. eigenvalues -- 0.15136 0.15136 0.36329 0.37874 0.42979 Alpha virt. eigenvalues -- 0.42979 0.45037 0.59596 0.59596 0.62049 Alpha virt. eigenvalues -- 1.03311 1.04713 1.04713 1.32737 1.32737 Alpha virt. eigenvalues -- 1.50951 1.50951 1.54274 1.92807 1.92807 Alpha virt. eigenvalues -- 2.01079 2.15134 2.30453 2.30453 2.33492 Alpha virt. eigenvalues -- 2.59139 2.59139 2.89525 3.17513 3.82524 Alpha virt. eigenvalues -- 3.82524 3.95902 3.95902 3.98623 3.98623 Alpha virt. eigenvalues -- 4.44158 4.44158 4.53686 4.76937 4.76937 Alpha virt. eigenvalues -- 4.90457 4.90457 4.92708 4.92708 5.29634 Alpha virt. eigenvalues -- 5.29634 5.35144 5.40868 5.40868 6.60669 Alpha virt. eigenvalues -- 6.66089 6.66089 6.99763 32.51530 33.29372 Condensed to atoms (all electrons): 1 2 1 N 6.261719 0.738281 2 N 0.738281 6.261719 Mulliken charges: 1 1 N 0.000000 2 N -0.000000 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N 0.000000 2 N -0.000000 Electronic spatial extent (au): = 39.3164 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.3651 YY= -10.3651 ZZ= -11.6956 XY= 0.0000 XZ= -0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.4435 YY= 0.4435 ZZ= -0.8870 XY= 0.0000 XZ= -0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0000 YYY= -0.3110 ZZZ= 0.0000 XYY= 0.0000 XXY= -0.1037 XXZ= -0.0000 XZZ= -0.0000 YZZ= -0.1170 YYZ= -0.0000 XYZ= -0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -8.9594 YYYY= -8.9657 ZZZZ= -31.7242 XXXY= 0.0000 XXXZ= -0.0000 YYYX= 0.0000 YYYZ= -0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -2.9875 XXZZ= -6.3224 YYZZ= -6.3236 XXYZ= -0.0000 YYXZ= -0.0000 ZZXY= 0.0000 N-N= 2.351033333729D+01 E-N=-3.027703020133D+02 KE= 1.087207603927D+02 Skip step-back as it is equivalent to step-up. Leave EnFreq: IXYZ= 6 JXYZ= 3 IStep= 1. Standard basis: def2TZVPP (5D, 7F) 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.5103333373 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned off. One-electron integrals computed using PRISM. 1 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.21D-04 NBF= 62 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 62 Initial guess from the checkpoint file: "NN.chk" B after Tr= 0.000000 0.000000 0.018897 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Keep R1 ints in memory in canonical form, NReq=5811726. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.986991550 A.U. after 1 cycles NFock= 1 Conv=0.28D-12 -V/T= 2.0024 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.27646148D+02 Semi-Direct transformation. ModeAB= 2 MOrb= 5 LenV= 1610327063 LASXX= 501655 LTotXX= 501655 LenRXX= 501655 LTotAB= 526575 MaxLAS= 788400 LenRXY= 788400 NonZer= 1003310 LenScr= 2256384 LnRSAI= 0 LnScr1= 0 LExtra= 0 Total= 3546439 MaxDsk= -1 SrtSym= F ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1592924777D-01 E2= -0.4794282191D-01 alpha-beta T2 = 0.8829888041D-01 E2= -0.2778348651D+00 beta-beta T2 = 0.1592924777D-01 E2= -0.4794282191D-01 ANorm= 0.1058374875D+01 E2 = -0.3737205089D+00 EUMP2 = -0.10936071205874D+03 Keep R2 and R3 ints in memory in canonical form, NReq=7722643. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.96079978D-02 E3= 0.81251138D-02 EUMP3= -0.10935258694D+03 E4(DQ)= -0.29088126D-02 UMP4(DQ)= -0.10935549576D+03 E4(SDQ)= -0.85897788D-02 UMP4(SDQ)= -0.10936117672D+03 DE(Corr)= -0.35573985 E(Corr)= -109.34273140 NORM(A)= 0.10536678D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37085278 E(CORR)= -109.35784433 Delta=-1.51D-02 NORM(A)= 0.10594968D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37068464 E(CORR)= -109.35767619 Delta= 1.68D-04 NORM(A)= 0.10608011D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37177425 E(CORR)= -109.35876580 Delta=-1.09D-03 NORM(A)= 0.10611666D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37187435 E(CORR)= -109.35886589 Delta=-1.00D-04 NORM(A)= 0.10612044D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188374 E(CORR)= -109.35887529 Delta=-9.39D-06 NORM(A)= 0.10611977D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188450 E(CORR)= -109.35887605 Delta=-7.65D-07 NORM(A)= 0.10612004D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188371 E(CORR)= -109.35887526 Delta= 7.95D-07 NORM(A)= 0.10611997D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188419 E(CORR)= -109.35887574 Delta=-4.86D-07 NORM(A)= 0.10611999D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188408 E(CORR)= -109.35887563 Delta= 1.13D-07 NORM(A)= 0.10611999D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta=-3.62D-08 NORM(A)= 0.10611999D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta= 1.31D-09 NORM(A)= 0.10611999D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta=-1.44D-09 NORM(A)= 0.10611999D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta=-4.87D-10 NORM(A)= 0.10611999D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887566 Delta=-2.87D-10 NORM(A)= 0.10611999D+01 Iteration Nr. 16 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887567 Delta=-2.98D-11 NORM(A)= 0.10611999D+01 Wavefunction amplitudes converged. E(Corr)= -109.35887567 Largest amplitude= 7.65D-02 T4(AAA)= -0.40662246D-03 T4(AAB)= -0.93008286D-02 T5(AAA)= 0.24997824D-04 T5(AAB)= 0.40973226D-03 Time for triples= 3.02 seconds. T4(CCSD)= -0.19414902D-01 T5(CCSD)= 0.86946017D-03 CCSD(T)= -0.10937742111D+03 Discarding MO integrals. ********************************************************************** Population analysis using the SCF Density. ********************************************************************** Alpha occ. eigenvalues -- -15.68546 -15.68203 -1.46760 -0.78022 -0.63367 Alpha occ. eigenvalues -- -0.61179 -0.61179 Alpha virt. eigenvalues -- 0.15136 0.15136 0.36329 0.37874 0.42979 Alpha virt. eigenvalues -- 0.42979 0.45037 0.59596 0.59596 0.62049 Alpha virt. eigenvalues -- 1.03311 1.04713 1.04713 1.32737 1.32737 Alpha virt. eigenvalues -- 1.50951 1.50951 1.54274 1.92807 1.92807 Alpha virt. eigenvalues -- 2.01079 2.15134 2.30453 2.30453 2.33492 Alpha virt. eigenvalues -- 2.59139 2.59139 2.89525 3.17513 3.82524 Alpha virt. eigenvalues -- 3.82524 3.95902 3.95902 3.98623 3.98623 Alpha virt. eigenvalues -- 4.44158 4.44158 4.53686 4.76937 4.76937 Alpha virt. eigenvalues -- 4.90457 4.90457 4.92708 4.92708 5.29634 Alpha virt. eigenvalues -- 5.29634 5.35144 5.40868 5.40868 6.60669 Alpha virt. eigenvalues -- 6.66089 6.66089 6.99763 32.51530 33.29372 Condensed to atoms (all electrons): 1 2 1 N 6.261719 0.738281 2 N 0.738281 6.261719 Mulliken charges: 1 1 N 0.000000 2 N -0.000000 Sum of Mulliken charges = -0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N 0.000000 2 N -0.000000 Electronic spatial extent (au): = 39.3164 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= -0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.3651 YY= -10.3651 ZZ= -11.6956 XY= -0.0000 XZ= -0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.4435 YY= 0.4435 ZZ= -0.8870 XY= -0.0000 XZ= -0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0000 YYY= -0.0000 ZZZ= -0.3509 XYY= 0.0000 XXY= -0.0000 XXZ= -0.1037 XZZ= -0.0000 YZZ= -0.0000 YYZ= -0.1037 XYZ= -0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -8.9594 YYYY= -8.9594 ZZZZ= -31.7312 XXXY= -0.0000 XXXZ= -0.0000 YYYX= -0.0000 YYYZ= -0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -2.9865 XXZZ= -6.3235 YYZZ= -6.3235 XXYZ= -0.0000 YYXZ= -0.0000 ZZXY= -0.0000 N-N= 2.351033333729D+01 E-N=-3.027703020133D+02 KE= 1.087207603927D+02 Leave EnFreq: IXYZ= 6 JXYZ= 3 IStep= 2. Standard basis: def2TZVPP (5D, 7F) 62 basis functions, 102 primitive gaussians, 72 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.5103333373 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned off. One-electron integrals computed using PRISM. 1 Symmetry operations used in ECPInt. ECPInt: NShTT= 253 NPrTT= 864 LenC2= 254 LenP2D= 816. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 62 RedAO= T EigKep= 2.21D-04 NBF= 62 NBsUse= 62 1.00D-06 EigRej= -1.00D+00 NBFU= 62 Initial guess from the checkpoint file: "NN.chk" B after Tr= 0.000000 0.000000 -0.018897 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Keep R1 ints in memory in canonical form, NReq=5811726. Requested convergence on RMS density matrix=1.00D-11 within1024 cycles. Requested convergence on MAX density matrix=1.00D-09. Requested convergence on energy=1.00D-09. No special actions if energy rises. SCF Done: E(RHF) = -108.986991550 A.U. after 1 cycles NFock= 1 Conv=0.27D-12 -V/T= 2.0024 ExpMin= 1.36D-01 ExpMax= 1.97D+04 ExpMxC= 6.73D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 62 NBasis= 62 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 60 NOA= 5 NOB= 5 NVA= 55 NVB= 55 **** Warning!!: The largest alpha MO coefficient is 0.27646148D+02 Semi-Direct transformation. ModeAB= 2 MOrb= 5 LenV= 1610327063 LASXX= 501655 LTotXX= 501655 LenRXX= 501655 LTotAB= 526575 MaxLAS= 788400 LenRXY= 788400 NonZer= 1003310 LenScr= 2256384 LnRSAI= 0 LnScr1= 0 LExtra= 0 Total= 3546439 MaxDsk= -1 SrtSym= F ITran= 4 JobTyp=0 Pass 1: I= 1 to 5. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1592924777D-01 E2= -0.4794282191D-01 alpha-beta T2 = 0.8829888041D-01 E2= -0.2778348651D+00 beta-beta T2 = 0.1592924777D-01 E2= -0.4794282191D-01 ANorm= 0.1058374875D+01 E2 = -0.3737205089D+00 EUMP2 = -0.10936071205874D+03 Keep R2 and R3 ints in memory in canonical form, NReq=7722643. CIDS: In Core Option IDoMem= 1. Iterations=2048 Convergence= 0.100D-09 Produce multiple copies of IABC intergrals Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. MP4(R+Q)= 0.96079978D-02 E3= 0.81251138D-02 EUMP3= -0.10935258694D+03 E4(DQ)= -0.29088126D-02 UMP4(DQ)= -0.10935549576D+03 E4(SDQ)= -0.85897788D-02 UMP4(SDQ)= -0.10936117672D+03 DE(Corr)= -0.35573985 E(Corr)= -109.34273140 NORM(A)= 0.10536678D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37085278 E(CORR)= -109.35784433 Delta=-1.51D-02 NORM(A)= 0.10594968D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37068464 E(CORR)= -109.35767619 Delta= 1.68D-04 NORM(A)= 0.10608011D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37177425 E(CORR)= -109.35876580 Delta=-1.09D-03 NORM(A)= 0.10611666D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37187435 E(CORR)= -109.35886589 Delta=-1.00D-04 NORM(A)= 0.10612044D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188374 E(CORR)= -109.35887529 Delta=-9.39D-06 NORM(A)= 0.10611977D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188450 E(CORR)= -109.35887605 Delta=-7.65D-07 NORM(A)= 0.10612004D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188371 E(CORR)= -109.35887526 Delta= 7.95D-07 NORM(A)= 0.10611997D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188419 E(CORR)= -109.35887574 Delta=-4.86D-07 NORM(A)= 0.10611999D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188408 E(CORR)= -109.35887563 Delta= 1.13D-07 NORM(A)= 0.10611999D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta=-3.62D-08 NORM(A)= 0.10611999D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta= 1.21D-09 NORM(A)= 0.10611999D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188411 E(CORR)= -109.35887566 Delta=-1.53D-09 NORM(A)= 0.10611999D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887567 Delta=-2.52D-09 NORM(A)= 0.10611999D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887567 Delta= 1.69D-09 NORM(A)= 0.10611999D+01 Iteration Nr. 16 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887567 Delta=-2.01D-10 NORM(A)= 0.10611999D+01 Iteration Nr. 17 ********************** DD1Dir will call FoFMem 1 times, MxPair= 30 NAB= 15 NAA= 0 NBB= 0. DE(Corr)= -0.37188412 E(CORR)= -109.35887567 Delta=-1.27D-11 NORM(A)= 0.10611999D+01 Wavefunction amplitudes converged. E(Corr)= -109.35887567 Largest amplitude= 7.19D-02 T4(AAA)= -0.40662245D-03 T4(AAB)= -0.93008286D-02 T5(AAA)= 0.24997824D-04 T5(AAB)= 0.40973227D-03 Time for triples= 3.06 seconds. T4(CCSD)= -0.19414902D-01 T5(CCSD)= 0.86946018D-03 CCSD(T)= -0.10937742111D+03 Discarding MO integrals. ********************************************************************** Population analysis using the SCF Density. ********************************************************************** Alpha occ. eigenvalues -- -15.68546 -15.68203 -1.46760 -0.78022 -0.63367 Alpha occ. eigenvalues -- -0.61179 -0.61179 Alpha virt. eigenvalues -- 0.15136 0.15136 0.36329 0.37874 0.42979 Alpha virt. eigenvalues -- 0.42979 0.45037 0.59596 0.59596 0.62049 Alpha virt. eigenvalues -- 1.03311 1.04713 1.04713 1.32737 1.32737 Alpha virt. eigenvalues -- 1.50951 1.50951 1.54274 1.92807 1.92807 Alpha virt. eigenvalues -- 2.01079 2.15134 2.30453 2.30453 2.33492 Alpha virt. eigenvalues -- 2.59139 2.59139 2.89525 3.17513 3.82524 Alpha virt. eigenvalues -- 3.82524 3.95902 3.95902 3.98623 3.98623 Alpha virt. eigenvalues -- 4.44158 4.44158 4.53686 4.76937 4.76937 Alpha virt. eigenvalues -- 4.90457 4.90457 4.92708 4.92708 5.29634 Alpha virt. eigenvalues -- 5.29634 5.35144 5.40868 5.40868 6.60669 Alpha virt. eigenvalues -- 6.66089 6.66089 6.99763 32.51530 33.29372 Condensed to atoms (all electrons): 1 2 1 N 6.261719 0.738281 2 N 0.738281 6.261719 Mulliken charges: 1 1 N 0.000000 2 N -0.000000 Sum of Mulliken charges = -0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N 0.000000 2 N -0.000000 Electronic spatial extent (au): = 39.3164 Charge= -0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= -0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.3651 YY= -10.3651 ZZ= -11.6956 XY= -0.0000 XZ= -0.0000 YZ= -0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.4435 YY= 0.4435 ZZ= -0.8870 XY= -0.0000 XZ= -0.0000 YZ= -0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0000 YYY= -0.0000 ZZZ= 0.3509 XYY= 0.0000 XXY= -0.0000 XXZ= 0.1037 XZZ= 0.0000 YZZ= -0.0000 YYZ= 0.1037 XYZ= -0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -8.9594 YYYY= -8.9594 ZZZZ= -31.7312 XXXY= -0.0000 XXXZ= -0.0000 YYYX= -0.0000 YYYZ= -0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -2.9865 XXZZ= -6.3235 YYZZ= -6.3235 XXYZ= -0.0000 YYXZ= -0.0000 ZZXY= -0.0000 N-N= 2.351033333729D+01 E-N=-3.027703020133D+02 KE= 1.087207603927D+02 Numerical evaluation of force constants complete. Full mass-weighted force constant matrix: Low frequencies --- -1.6070 -1.2963 -1.2623 10.8713 10.9022 2348.8395 Diagonal vibrational polarizability: 0.0000000 0.0000000 0.0000000 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates: 1 SGG Frequencies -- 2348.8395 Red. masses -- 14.0031 Frc consts -- 45.5177 IR Inten -- 0.0000 Atom AN X Y Z 1 7 -0.00 0.00 0.71 2 7 0.00 0.00 -0.71 ------------------- - Thermochemistry - ------------------- Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 7 and mass 14.00307 Atom 2 has atomic number 7 and mass 14.00307 Molecular mass: 28.00615 amu. Principal axes and moments of inertia in atomic units: 1 2 3 Eigenvalues -- 0.00000 30.41361 30.41361 X -0.00000 1.00000 -0.00000 Y 0.00000 0.00000 1.00000 Z 1.00000 0.00000 -0.00000 This molecule is a prolate symmetric top. Rotational symmetry number 2. Rotational temperature (Kelvin) 2.84787 Rotational constant (GHZ): 59.339920 Zero-point vibrational energy 14049.2 (Joules/Mol) 3.35783 (Kcal/Mol) Vibrational temperatures: 3379.46 (Kelvin) Zero-point correction= 0.005351 (Hartree/Particle) Thermal correction to Energy= 0.007712 Thermal correction to Enthalpy= 0.008656 Thermal correction to Gibbs Free Energy= -0.013094 Sum of electronic and zero-point Energies= -109.372070 Sum of electronic and thermal Energies= -109.369709 Sum of electronic and thermal Enthalpies= -109.368765 Sum of electronic and thermal Free Energies= -109.390515 E (Thermal) CV S KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin Total 4.839 4.971 45.777 Electronic 0.000 0.000 0.000 Translational 0.889 2.981 35.924 Rotational 0.592 1.987 9.852 Vibrational 3.358 0.003 0.000 Q Log10(Q) Ln(Q) Total Bot 0.105418D+07 6.022914 13.868272 Total V=0 0.304947D+09 8.484224 19.535648 Vib (Bot) 0.345697D-02 -2.461305 -5.667364 Vib (V=0) 0.100001D+01 0.000005 0.000012 Electronic 0.100000D+01 0.000000 0.000000 Translational 0.582551D+07 6.765334 15.577757 Rotational 0.523462D+02 1.718885 3.957879 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.000000000 -0.000000000 -0.000331699 2 7 -0.000000000 -0.000000000 0.000331699 ------------------------------------------------------------------- Cartesian Forces: Max 0.000331699 RMS 0.000191506 ----------------------------------------------------------------------------------------------- Internal Coordinate Forces (Hartree/Bohr or radian) Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J ----------------------------------------------------------------------------------------------- 1 N 2 N 1 0.000332( 1) ----------------------------------------------------------------------------------------------- Internal Forces: Max 0.000331699 RMS 0.000331699 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Search for a local minimum. Step number 1 out of a maximum of 2 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- analytic derivatives used. The second derivative matrix: B1 B1 1.46181 ITU= 0 Eigenvalues --- 1.46181 Angle between quadratic step and forces= 0.00 degrees. Linear search not attempted -- first point. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) B1 2.08419 0.00033 0.00000 0.00023 0.00023 2.08442 Item Value Threshold Converged? Maximum Force 0.000332 0.000450 YES RMS Force 0.000332 0.000300 NO Maximum Displacement 0.000227 0.001800 YES RMS Displacement 0.000227 0.001200 YES Predicted change in Energy=-3.763274D-08 ---------------------------- ! Non-Optimized Parameters ! ! (Angstroms and Degrees) ! ---------------------- ---------------------- ! Name Value Derivative information (Atomic Units) ! ------------------------------------------------------------------------ ! B1 1.103 -DE/DX = 0.0003 ! ------------------------------------------------------------------------ GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad 1\1\GINC-CH-RZEPA-PRO\Freq\RCCSD(T)-FC\def2TZVPP\N2\ROOT\23-May-2020\1 \\#N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RCCSD(T)(FC)/def2TZV PP Freq\\HIJZUW\\0,1\N\N,1,B1\\B1=1.10290581\\Version=EM64M-G16RevB.01 \State=1-SGG\HF=-108.9869915\MP2=-109.3607121\MP3=-109.3525869\MP4D=-1 09.3651038\MP4DQ=-109.3554958\MP4SDQ=-109.3611767\CCSD=-109.3588757\CC SD(T)=-109.3774211\RMSD=3.596e-12\RMSF=1.915e-04\ZeroPoint=0.0053511\T hermal=0.0077116\PG=D*H [C*(N1.N1)]\NImag=0\\0.00003105,0.,0.00003063, 0.,0.,1.46181157,-0.00003194,0.,0.,0.00003105,0.,-0.00003200,0.,0.,0.0 0003063,0.,0.,-1.46181242,0.,0.,1.46181157\\0.,0.,0.00033170,0.,0.,-0. 00033170\\\@ A MAN IS EXACTLY AS GREAT AS THE TIDE SURGING BENEATH HIM. - BISMARCK Job cpu time: 0 days 0 hours 5 minutes 48.6 seconds. Elapsed time: 0 days 0 hours 0 minutes 48.4 seconds. File lengths (MBytes): RWF= 87 Int= 0 D2E= 0 Chk= 38 Scr= 1 Normal termination of Gaussian 16 at Sat May 23 19:20:26 2020.