Entering Gaussian System, Link 0=g16 Input=fe+.gjf Output=fe+.log Initial command: /Applications/g16/l1.exe "/Users/hrzepa/Downloads/Gau-98235.inp" -scrdir="/Users/hrzepa/Downloads/" Entering Link 1 = /Applications/g16/l1.exe PID= 98236. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2016, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 16 program. It is based on the Gaussian(R) 09 system (copyright 2009, Gaussian, Inc.), the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016. ****************************************** Gaussian 16: EM64M-G16RevA.03 25-Dec-2016 18-Jun-2017 ****************************************** --------------------------------------------------------------------- # uTPSSH/Def2TZVPP integral=(acc2e=12,grid=ultrafine) scf(vshift=400) --------------------------------------------------------------------- 1/38=1,172=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=44,7=202,11=2,25=1,27=12,30=1,74=-35,75=-5,116=2/1,2,3; 4//1; 5/5=2,10=400,38=5,87=12/2; 6/7=2,8=2,9=2,10=2,28=1,87=12/1; 99/5=1,9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 2 Multiplicity = 1 Fe -0.68365 0. 0. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 26 0 -0.683646 0.000000 0.000000 --------------------------------------------------------------------- Stoichiometry Fe(2+) Framework group OH[O(Fe)] Deg. of freedom 0 Full point group OH NOp 48 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 26 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Standard basis: def2TZVPP (5D, 7F) There are 24 symmetry adapted cartesian basis functions of AG symmetry. There are 7 symmetry adapted cartesian basis functions of B1G symmetry. There are 7 symmetry adapted cartesian basis functions of B2G symmetry. There are 7 symmetry adapted cartesian basis functions of B3G symmetry. There are 2 symmetry adapted cartesian basis functions of AU symmetry. There are 11 symmetry adapted cartesian basis functions of B1U symmetry. There are 11 symmetry adapted cartesian basis functions of B2U symmetry. There are 11 symmetry adapted cartesian basis functions of B3U symmetry. There are 17 symmetry adapted basis functions of AG symmetry. There are 6 symmetry adapted basis functions of B1G symmetry. There are 6 symmetry adapted basis functions of B2G symmetry. There are 6 symmetry adapted basis functions of B3G symmetry. There are 2 symmetry adapted basis functions of AU symmetry. There are 9 symmetry adapted basis functions of B1U symmetry. There are 9 symmetry adapted basis functions of B2U symmetry. There are 9 symmetry adapted basis functions of B3U symmetry. 64 basis functions, 130 primitive gaussians, 80 cartesian basis functions 12 alpha electrons 12 beta electrons nuclear repulsion energy 0.0000000000 Hartrees. NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. 48 Symmetry operations used in ECPInt. ECPInt: NShTT= 171 NPrTT= 839 LenC2= 172 LenP2D= 839. LDataN: DoStor=T MaxTD1= 8 Len= 415 NBasis= 64 RedAO= T EigKep= 5.37D-02 NBF= 17 6 6 6 2 9 9 9 NBsUse= 64 1.00D-06 EigRej= -1.00D+00 NBFU= 17 6 6 6 2 9 9 9 ExpMin= 4.20D-02 ExpMax= 3.01D+05 ExpMxC= 2.91D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 1009 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Alpha Orbitals: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) Virtual (EG) (EG) (A1G) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (A2U) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (EG) (EG) (T1G) (T1G) (T1G) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T2U) (T2U) (T2U) (A2U) (T1U) (T1U) (T1U) Beta Orbitals: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) Virtual (EG) (EG) (A1G) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (A2U) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (EG) (EG) (T1G) (T1G) (T1G) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T2U) (T2U) (T2U) (A2U) (T1U) (T1U) (T1U) The electronic state of the initial guess is 1-A1G. Initial guess = 0.0000 = 0.0000 = 0.0000 = 0.0000 S= 0.0000 Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=6710790. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. Virtual orbitals will be shifted by 0.400 hartree. No special actions if energy rises. EnCoef did 100 forward-backward iterations SCF Done: E(UTPSSh) = -1262.64727102 A.U. after 12 cycles NFock= 12 Conv=0.62D-08 -V/T= 2.0016 = 0.0000 = 0.0000 = 0.0000 =-0.0000 S=-0.0000 = 0.000000000000E+00 Annihilation of the first spin contaminant: S**2 before annihilation 0.0000, after 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Alpha Orbitals: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) Virtual (EG) (EG) (A1G) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (A2U) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (EG) (EG) (T1G) (T1G) (T1G) (A1G) (EG) (EG) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A2U) (T2U) (T2U) (T2U) Beta Orbitals: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) Virtual (EG) (EG) (A1G) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (A2U) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (EG) (EG) (T1G) (T1G) (T1G) (A1G) (EG) (EG) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A2U) (T2U) (T2U) (T2U) The electronic state is 1-A1G. Alpha occ. eigenvalues -- -256.64234 -30.64948 -26.48650 -26.48650 -26.48650 Alpha occ. eigenvalues -- -4.16909 -2.93926 -2.93926 -2.93926 -0.98550 Alpha occ. eigenvalues -- -0.98550 -0.98550 Alpha virt. eigenvalues -- -0.88136 -0.88136 -0.69780 -0.49616 -0.49616 Alpha virt. eigenvalues -- -0.49616 -0.25608 -0.24015 -0.24015 -0.24015 Alpha virt. eigenvalues -- -0.23088 -0.23088 -0.05824 -0.05824 -0.05824 Alpha virt. eigenvalues -- 0.30643 0.30643 0.30643 0.32148 0.32148 Alpha virt. eigenvalues -- 1.58577 1.60037 1.60037 1.60037 1.60385 Alpha virt. eigenvalues -- 1.60385 1.60385 1.62613 1.62613 1.62613 Alpha virt. eigenvalues -- 1.80137 2.71746 2.71746 2.71746 2.73762 Alpha virt. eigenvalues -- 2.73762 7.74981 7.74981 7.74981 7.75405 Alpha virt. eigenvalues -- 7.75503 7.75503 7.76590 7.76590 7.76590 Alpha virt. eigenvalues -- 8.40337 8.40337 8.40337 8.40687 8.40736 Alpha virt. eigenvalues -- 8.40736 8.40736 Beta occ. eigenvalues -- -256.64234 -30.64948 -26.48650 -26.48650 -26.48650 Beta occ. eigenvalues -- -4.16909 -2.93926 -2.93926 -2.93926 -0.98550 Beta occ. eigenvalues -- -0.98550 -0.98550 Beta virt. eigenvalues -- -0.88136 -0.88136 -0.69780 -0.49616 -0.49616 Beta virt. eigenvalues -- -0.49616 -0.25608 -0.24015 -0.24015 -0.24015 Beta virt. eigenvalues -- -0.23088 -0.23088 -0.05824 -0.05824 -0.05824 Beta virt. eigenvalues -- 0.30643 0.30643 0.30643 0.32148 0.32148 Beta virt. eigenvalues -- 1.58577 1.60037 1.60037 1.60037 1.60385 Beta virt. eigenvalues -- 1.60385 1.60385 1.62613 1.62613 1.62613 Beta virt. eigenvalues -- 1.80137 2.71746 2.71746 2.71746 2.73762 Beta virt. eigenvalues -- 2.73762 7.74981 7.74981 7.74981 7.75405 Beta virt. eigenvalues -- 7.75503 7.75503 7.76590 7.76590 7.76590 Beta virt. eigenvalues -- 8.40337 8.40337 8.40337 8.40687 8.40736 Beta virt. eigenvalues -- 8.40736 8.40736 Condensed to atoms (all electrons): 1 1 Fe 24.000000 Atomic-Atomic Spin Densities. 1 1 Fe 0.000000 Mulliken charges and spin densities: 1 2 1 Fe 2.000000 0.000000 Sum of Mulliken charges = 2.00000 0.00000 Mulliken charges and spin densities with hydrogens summed into heavy atoms: 1 2 1 Fe 2.000000 0.000000 Electronic spatial extent (au): = 16.3616 Charge= 2.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -7.3356 YY= -7.3356 ZZ= -7.3356 XY= -0.0000 XZ= -0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= -0.0000 XZ= -0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -2.9429 YYYY= -2.9429 ZZZZ= -2.9429 XXXY= 0.0000 XXXZ= -0.0000 YYYX= -0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= -0.0000 XXYY= -1.2476 XXZZ= -1.2476 YYZZ= -1.2476 XXYZ= 0.0000 YYXZ= -0.0000 ZZXY= -0.0000 N-N= 0.000000000000D+00 E-N=-2.986837673243D+03 KE= 1.260679575960D+03 Symmetry AG KE= 7.967910657311D+02 Symmetry B1G KE= 1.461494478483D+01 Symmetry B2G KE= 1.461494478483D+01 Symmetry B3G KE= 1.461494478483D+01 Symmetry AU KE= 3.229090942514D-36 Symmetry B1U KE= 1.400145586247D+02 Symmetry B2U KE= 1.400145586247D+02 Symmetry B3U KE= 1.400145586247D+02 Symmetry AG SP= 0.000000000000D+00 Symmetry B1G SP= 0.000000000000D+00 Symmetry B2G SP= 0.000000000000D+00 Symmetry B3G SP= 0.000000000000D+00 Symmetry AU SP= 0.000000000000D+00 Symmetry B1U SP= 0.000000000000D+00 Symmetry B2U SP= 0.000000000000D+00 Symmetry B3U SP= 0.000000000000D+00 Isotropic Fermi Contact Couplings Atom a.u. MegaHertz Gauss 10(-4) cm-1 1 Fe(57) 0.00000 0.00000 0.00000 0.00000 -------------------------------------------------------- Center ---- Spin Dipole Couplings ---- 3XX-RR 3YY-RR 3ZZ-RR -------------------------------------------------------- 1 Atom 0.000000 0.000000 0.000000 -------------------------------------------------------- XY XZ YZ -------------------------------------------------------- 1 Atom 0.000000 0.000000 0.000000 -------------------------------------------------------- --------------------------------------------------------------------------------- Anisotropic Spin Dipole Couplings in Principal Axis System --------------------------------------------------------------------------------- Atom a.u. MegaHertz Gauss 10(-4) cm-1 Axes Baa 0.0000 0.000 0.000 0.000 1.0000 0.0000 0.0000 1 Fe(57) Bbb 0.0000 0.000 0.000 0.000 -0.0000 1.0000 0.0000 Bcc 0.0000 0.000 0.000 0.000 0.0000 0.0000 1.0000 --------------------------------------------------------------------------------- 1\1\GINC-HSR-MACBOOK-PRO\SP\UTPSSh\def2TZVPP\Fe1(2+)\HRZEPA\18-Jun-201 7\0\\# uTPSSH/Def2TZVPP integral=(acc2e=12,grid=ultrafine) scf(vshift= 400)\\Title Card Required\\2,1\Fe,0,-0.6836461,0.,0.\\Version=EM64M-G1 6RevA.03\State=1-A1G\HF=-1262.647271\S2=0.\S2-1=0.\S2A=0.\RMSD=6.161e- 09\Dipole=0.,0.,0.\Quadrupole=0.,0.,0.,0.,0.,0.\PG=OH [O(Fe1)]\\@ CHILDREN YOU ARE VERY LITTLE, AND YOUR BONES ARE VERY BRITTLE; IF YOU WOULD GROW GREAT AND STATELY YOU MUST TRY TO WALK SEDATELY. YOU MUST STILL BE BRIGHT AND QUIET, AND CONTENT WITH SIMPLE DIET; AND REMAIN, THROUGH ALL BEWILD'RING INNOCENT AND HONEST CHILDREN. -- A CHILD'S GARDEN OF VERSE, ROBERT LOUIS STEVENSON Job cpu time: 0 days 0 hours 0 minutes 4.1 seconds. Elapsed time: 0 days 0 hours 0 minutes 5.2 seconds. File lengths (MBytes): RWF= 6 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 16 at Sun Jun 18 18:22:07 2017.